基于深度学习的CTA全自动侧枝循环评分方法及系统

    公开(公告)号:CN112907563B

    公开(公告)日:2023-12-01

    申请号:CN202110286102.4

    申请日:2021-03-17

    Abstract: 本发明提供了一种基于深度学习的CTA全自动侧枝循环评分方法及系统,涉及医学图像处理技术领域,该方法包括:步骤S1:对大脑CTA图像进行掩模和归一化的预处理;步骤S2:对CTA图像进行脑区划分,获取相关解剖图谱以及功能图谱,获取加权大脑各脑区掩模图;步骤S3:对掩模与归一化后的CTA图像进行血管分割;步骤S4:基于血管分割结果量化计算评分特征;步骤S5:基于卷积神经网络测量血管壁厚度的评分特征;步骤S6:构建多标签评分分类模型,对计算得到的特征向量进行分类评分。本发明能够实现基于血流代偿途径的侧枝循环血管分级机制,并提高小血管的分割精度,还能使得评分策略具有更广泛(56)对比文件刘国玮.基于深度学习的脑部CTA图像血管分割方法研究《.中国优秀硕士学位论文全文数据库(信息科技辑)》.2020,(第03期),全文.Rahil Shahzad et.al.Fully automateddetection and segmentation ofintracranial aneurysms in subarachnoidhemorrhage on CTA using deep learning.《nature》.2020,全文.吴秋雯等.基于深度学习的计算机体层摄影血管造影颈动脉斑块分割初步研究《.上海医学》.2020,第43卷(第05期),280-283.

    一种神经黑色素图像重建方法、装置、设备和存储介质

    公开(公告)号:CN111681184A

    公开(公告)日:2020-09-18

    申请号:CN202010523058.X

    申请日:2020-06-09

    Abstract: 本申请实施例提出了一种神经黑色素图像重建方法、装置、电子设备和计算机存储介质,所述神经黑色素图像重建方法包括:获取QSM序列的N组幅值图像;定所述N组幅值图像中的前M组幅值图像;将所述前M组幅值图像中的每一组幅值图像确定为短回波时间的幅值图像;基于所述M组短回波时间的幅值图像进行图像重建,得到所述N组幅值图像对应的神经黑色素图像。由于该神经黑色素图像的重建方法是通过QSM序列所获得的短回波时间的幅值图像所重建的,可以避免在后续的图像处理流程中进行图像的配准,同时,可以实现通过同一次扫描获取包含NM-MRI序列和QSM两个序列的信息,有利于实际临床检查。

    一种基于改进注意力模块的医疗影像分割方法及装置

    公开(公告)号:CN113793345B

    公开(公告)日:2023-10-31

    申请号:CN202111042489.5

    申请日:2021-09-07

    Abstract: 本发明公开了一种图像处理方法、装置、计算机设备及存储介质。该方法包括:获取目标图像的目标张量数据;将目标张量数据输入至目标神经网络模型,目标神经网络模型包括编码器、解码器和注意力模块;编码器用于根据目标张量数据进行降采样,得到第一特征矩阵;注意力模块用于根据第一特征矩阵进行空洞卷积,得到第二特征矩阵;根据第二特征矩阵确定原始注意力图;根据原始注意力图确定空洞注意力图;根据第一特征矩阵和空洞注意力图确定第三特征矩阵;将第三特征矩阵输出值解码器;解码器用于根据第三特征矩阵进行上采样,得到图像分割结果;根据目标神经网络模型的输出进行目标图像的分割反馈。能够提高图像分割的准确性。

    基于多模态磁共振成像的帕金森病数据分类方法及系统

    公开(公告)号:CN116452859A

    公开(公告)日:2023-07-18

    申请号:CN202310316672.2

    申请日:2023-03-28

    Abstract: 本发明提供了一种基于多模态磁共振成像的帕金森病数据分类方法及系统,包括:获取脑结构磁共振图像、脑扩散加权图像和脑磁敏感加权图像;对脑多模态磁共振影像进行预处理,得到预处理后的脑结构图像、脑扩散图像和脑磁敏感图像;提取脑结构特征,得到结构特征集合;提取脑扩散特征,得到脑扩散特征集合;提取脑磁敏感特征;得到脑磁敏感特征集合;采用一对一策略的多分类模型,进行特征筛选,得到分类结果。本发明提出的PD、非典型性帕金森病和健康对照分类的数据处理分类,对全脑ROI提取多模态特征,并用特征筛选方法确定了对分类有价值的区域和特征,有助于基于影像的PD临床诊断和机制研究,能满足PD智能辅助诊断的需要。

    一种神经黑色素图像重建方法、装置、设备和存储介质

    公开(公告)号:CN111681184B

    公开(公告)日:2023-02-24

    申请号:CN202010523058.X

    申请日:2020-06-09

    Abstract: 本申请实施例提出了一种神经黑色素图像重建方法、装置、电子设备和计算机存储介质,所述神经黑色素图像重建方法包括:获取QSM序列的N组幅值图像;定所述N组幅值图像中的前M组幅值图像;将所述前M组幅值图像中的每一组幅值图像确定为短回波时间的幅值图像;基于所述M组短回波时间的幅值图像进行图像重建,得到所述N组幅值图像对应的神经黑色素图像。由于该神经黑色素图像的重建方法是通过QSM序列所获得的短回波时间的幅值图像所重建的,可以避免在后续的图像处理流程中进行图像的配准,同时,可以实现通过同一次扫描获取包含NM‑MRI序列和QSM两个序列的信息,有利于实际临床检查。

    一种基于改进注意力模块的医疗影像分割方法及装置

    公开(公告)号:CN113793345A

    公开(公告)日:2021-12-14

    申请号:CN202111042489.5

    申请日:2021-09-07

    Abstract: 本发明公开了一种图像处理方法、装置、计算机设备及存储介质。该方法包括:获取目标图像的目标张量数据;将目标张量数据输入至目标神经网络模型,目标神经网络模型包括编码器、解码器和注意力模块;编码器用于根据目标张量数据进行降采样,得到第一特征矩阵;注意力模块用于根据第一特征矩阵进行空洞卷积,得到第二特征矩阵;根据第二特征矩阵确定原始注意力图;根据原始注意力图确定空洞注意力图;根据第一特征矩阵和空洞注意力图确定第三特征矩阵;将第三特征矩阵输出值解码器;解码器用于根据第三特征矩阵进行上采样,得到图像分割结果;根据目标神经网络模型的输出进行目标图像的分割反馈。能够提高图像分割的准确性。

Patent Agency Ranking