-
-
公开(公告)号:CN116152560A
公开(公告)日:2023-05-23
申请号:CN202310174891.1
申请日:2023-02-24
Applicant: 复旦大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/26 , G06V10/80 , G06V10/25 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/096
Abstract: 本发明涉及一种基于多任务学习的胶质瘤图像分类方法及系统,该方法包括以下步骤:步骤S1、采集脑胶质瘤的多模态磁共振成像图像数据,将其分为训练集和测试集;步骤S2、构建基于多任务学习的多模态磁共振成像图像分类与分割联合网络,其损失函数为分割网络损失函数和分类网络损失函数的加权和;采用标注有肿瘤mask金标准的训练集对多模态磁共振成像图像分类与分割联合网络进行训练;步骤S3、采用训练好的多模态磁共振成像图像分类与分割联合网络对测试集进行图像分割与分类,输出胶质瘤多模态磁共振成像图像自动分割结果以及分类结果。与现有技术相比,本发明具有分类准确性高的优点。
-
公开(公告)号:CN114937171A
公开(公告)日:2022-08-23
申请号:CN202210513470.2
申请日:2022-05-11
Applicant: 复旦大学 , 粤港澳大湾区精准医学研究院(广州)
IPC: G06V10/764 , G06V10/80 , G06V10/26 , G06V10/40 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08 , G06T7/00
Abstract: 本发明提供了一种基于深度学习的阿尔茨海默分类系统,包括:模块M1:获取AD多模态数据并进行预处理,得到预处理后的AD多模态数据;模块M2:将预处理后的AD多模态数据按照预设比例分为训练集及测试集;模块M3:构建联合网络模型,包括MAM U‑net分割网络和T‑DenseNet分类网络;模块M4:利用训练集训练联合模型直至损失函数收敛,得到训练后的联合模型;模块M5:利用测试集通过训练后的联合模型进行预测,并根据预测结果和预设标注信息计算准确率,如果准确率未达到预设要求,则重复触发模块M4至模块M5直至准确率达到预设要求。
-
公开(公告)号:CN112967778A
公开(公告)日:2021-06-15
申请号:CN202110287375.0
申请日:2021-03-17
Applicant: 复旦大学附属华山医院
Inventor: 于泽宽 , 周锟 , 耿道颖 , 吴兴旺 , 王乐 , 韩方凯 , 刘晓 , 陈卫强 , 李强 , 王侠 , 刘学玲 , 吕锟 , 王容 , 杜鹏 , 文剑波 , 韩秋月 , 张海燕 , 杜成娟 , 王娜 , 李璇璇 , 吴昊 , 耿岩 , 李郁欣 , 张军 , 尹波 , 曹鑫
IPC: G16H20/10 , G16H30/20 , G16H30/40 , G16H50/20 , G06T7/00 , G06T7/11 , G06K9/46 , G06K9/62 , G06N20/20
Abstract: 本发明提供了一种基于机器学习的炎症性肠病精准用药方法及系统,涉及医学图像处理技术领域,该方法包括:步骤S1:获取炎症性肠病能谱CT数据并对能谱CT数据进行预处理,制作病情活动度‑用药标签数据集;步骤S2:对预处理后的能谱CT数据进行病灶区域分割;步骤S3:将炎症性肠病病灶区域ROIIBD进行影像组学特征提取;构建迁移模型;步骤S4:获得炎症性肠病无创用药评估模型。本发明能够帮助指导IBD患者的治疗方案选择,评估预后,进而缩短IBD患者的治疗时间,具有更好的临床实用性。
-
公开(公告)号:CN112967778B
公开(公告)日:2024-02-02
申请号:CN202110287375.0
申请日:2021-03-17
Applicant: 复旦大学附属华山医院
Inventor: 于泽宽 , 周锟 , 耿道颖 , 吴兴旺 , 王乐 , 韩方凯 , 刘晓 , 陈卫强 , 李强 , 王侠 , 刘学玲 , 吕锟 , 王容 , 杜鹏 , 文剑波 , 韩秋月 , 张海燕 , 杜成娟 , 王娜 , 李璇璇 , 吴昊 , 耿岩 , 李郁欣 , 张军 , 尹波 , 曹鑫
IPC: G16H20/10 , G16H30/20 , G16H30/40 , G16H50/20 , G06T7/00 , G06T7/11 , G06V10/44 , G06V10/74 , G06V10/764 , G06N20/20
Abstract: 时间,具有更好的临床实用性。本发明提供了一种基于机器学习的炎症性肠病精准用药方法及系统,涉及医学图像处理技术领域,该方法包括:步骤S1:获取炎症性肠病能谱CT数据并对能谱CT数据进行预处理,制作病情活动度‑用药标签数据集;步骤S2:对预处理后的能谱CT数据进行病灶区域分割;步骤S3:将炎症性肠病病灶区域ROIIBD进行影像组学特征提取;
-
公开(公告)号:CN113436155A
公开(公告)日:2021-09-24
申请号:CN202110668377.4
申请日:2021-06-16
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于深度学习的超声臂丛神经图像识别方法,涉及超声图像智能识别技术领域,该方法包括:获取多例超声神经图像数据并进行预处理,构建训练神经网络模型所需的带有标签的超声图像数据集;将超声图像数据集按照8:2的比例分为训练集和测试集,将训练集中的超声图像进行扩充和特征增强;构建挤压‑注意力机制模块SA加到传统卷积中;在V‑net网络中引入挤压激励模块和注意力机制模块从而构建SA V‑net网络模型并进行训练;载入训练好的SA V‑net网络模型,输入测试集进行预测得到识别结果,并根据标签计算Dice系数。本发明能够帮助临床医生快速准确的定位需要进行神经阻滞的区域,帮助使得患者在术中更加平稳,术后恢复更快,具有更好的临床实用性。
-
公开(公告)号:CN114937171B
公开(公告)日:2023-06-09
申请号:CN202210513470.2
申请日:2022-05-11
Applicant: 复旦大学 , 粤港澳大湾区精准医学研究院(广州)
IPC: G06V10/764 , G06V10/80 , G06V10/26 , G06V10/40 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08 , G06T7/00
Abstract: 本发明提供了一种基于深度学习的阿尔茨海默分类系统,包括:模块M1:获取AD多模态数据并进行预处理,得到预处理后的AD多模态数据;模块M2:将预处理后的AD多模态数据按照预设比例分为训练集及测试集;模块M3:构建联合网络模型,包括MAM U‑net分割网络和T‑DenseNet分类网络;模块M4:利用训练集训练联合模型直至损失函数收敛,得到训练后的联合模型;模块M5:利用测试集通过训练后的联合模型进行预测,并根据预测结果和预设标注信息计算准确率,如果准确率未达到预设要求,则重复触发模块M4至模块M5直至准确率达到预设要求。
-
公开(公告)号:CN114984457A
公开(公告)日:2022-09-02
申请号:CN202210539954.4
申请日:2022-05-17
Applicant: 复旦大学 , 粤港澳大湾区精准医学研究院(广州)
IPC: A61N5/06 , A61B5/055 , A61B5/00 , A61B3/12 , A61B3/14 , G06T7/00 , G06T7/11 , G06N3/04 , G06V10/82 , G06V10/774 , G06V10/764 , G06V10/25 , G06V10/40
Abstract: 本发明提供了一种基于脑功能网络的患者光刺激参数选择方法及系统,获取并预处理脑小血管病患者脑部弥散张量模态数据和静息态功能模态数据;基于预处理后的静息态功能模态数据,进行统计分析获取多个不同的全局网络属性和多条连接权重有差异的连边;对预处理后的脑部弥散张量模态数据运用卷积神经网络进行海马体区域分割,将图像所包含的信息进行量化获取多个影像组学特征;将获取的全局网络属性、连接权重有差异的连边与影像组学特征融合构成特征矩阵,构建多个基础分类器并运用集成学习进行训练,最后输出向量。本发明实现CSVD光刺激参数的自动化选择,克服临床上采用的复杂评分带来的诸多局限。
-
-
-
-
-
-
-