一种异常检测模型训练方法、异常检测方法及装置

    公开(公告)号:CN115456067A

    公开(公告)日:2022-12-09

    申请号:CN202211083445.1

    申请日:2022-09-06

    IPC分类号: G06K9/62 G06N3/08

    摘要: 本发明提供了一种异常检测模型训练方法、异常检测方法及装置,其中,异常检测模型训练方法包括:获取初始训练集;将初始训练集中的样本分别输入不同的异常分类模型进行预测,并根据预测类别进行标签标记;基于各样本对应的预测类别和标签分别计算各样本的投票熵;对投票熵大于熵值阈值的样本进行目标标记;利用带有目标标记的样本对目标异常分类模型进行训练,得到训练好的目标异常分类模型。在最大化提高异常检测模型准确率的同时,大幅降低由于过度依赖特征工程或对异常模式的挖掘单一导致异常检测假阳性概率过高的情况发生。

    一种基于RPA的数字员工群体协作方法

    公开(公告)号:CN116700925A

    公开(公告)日:2023-09-05

    申请号:CN202310694423.7

    申请日:2023-06-12

    IPC分类号: G06F9/48

    摘要: 本发明提出了一种基于RPA的数字员工群体协作方法,包括:进行任务编排,对任务编排结果提取特征数据,赋予任务不同的优先级,按照优先级的顺序生成进程队列;将运行正常的机器人划入数字员工资源池;按照进程调度算法为进程队列调度机器人,将进程队列中的任务分配给机器人执行;当监测到失败任务时,生成重试任务,根据重试任务的重试参数调整优先级;根据优先级调整前后的变化计算重试影响指标,判断是否生成一个新的重试队列,将重试队列中的重试任务分配给未在执行进程队列中的任务的机器人,与进程队列同时执行。本发明避免重试任务过多占用其他任务的数字员工资源的问题,提高了任务执行异常情况下的任务自动化执行效率。

    数字员工AI智能流程编排方法

    公开(公告)号:CN115578729B

    公开(公告)日:2023-03-21

    申请号:CN202211457579.5

    申请日:2022-11-21

    摘要: 本发明公开了数字员工AI智能流程编排方法,包括:采集带有流程信息的纸质文件的原始图像,对原始图像进行差异灰度化,得到若干差异灰度化图像;对差异灰度化图像进行预设角度的旋转,得到若干旋转灰度化图像;对旋转灰度化图像进行膨胀,利用霍夫变换检测膨胀后每行字符形成的字符直线,得到字符走向图;根据字符走向图对膨胀前的旋转灰度化图像进行透视变换,得到矫正图;提取矫正图中的箭头标识,以箭头标识作为辅助信息对矫正图进行仿射变换,旋转得到还原图,将还原图二值化后输入至字符识别模块进行识别,依次提取流程信息完成编排。本发明可以得到准确的文字走向,避免特殊角度等原因导致的识别错误,有利于提高处理速度和准确性。