千斤顶的固定装置
    2.
    发明公开

    公开(公告)号:CN110296129A

    公开(公告)日:2019-10-01

    申请号:CN201910318068.7

    申请日:2019-04-19

    IPC分类号: F16B1/00

    摘要: 本发明实施例提供了一种千斤顶的固定装置,该固定装置包括:磁力绝缘体;两块软磁结构关于磁力绝缘体对称设置且与磁力绝缘体贴合连接;永磁体,可旋转地设置在磁力绝缘体的中心处,永磁体的N极和S极的连线平行于两块软磁结构与磁力绝缘体构成的平面,当N极和S极的连线与磁力绝缘体垂直时,磁力线由N极通过固定装置接触的顺磁结构回到S极,形成闭路,固定装置通过磁力固定在顺磁结构上;磁力线由N极通过千斤顶的磁性底座回到S极,形成闭路,千斤顶的磁性底座通过磁力固定在固定装置上。该方案相对从多方向提供支撑力来固定千斤顶,可以实现千斤顶在非竖直方向上的固定,有利于减少或避免出现千斤顶掉落损伤人身、设备安全的技术问题。

    一种星载单光子激光雷达的最大测量深度评估方法

    公开(公告)号:CN111239713B

    公开(公告)日:2022-03-04

    申请号:CN202010191902.3

    申请日:2020-03-18

    申请人: 武汉大学

    IPC分类号: G01S7/497

    摘要: 本发明提出了一种星载单光子激光雷达的最大测量深度评估方法。计算单光子激光雷达进行水深测量时所采集的水下目标平均信号光子数量;计算由大气散射太阳背景光导致的噪声光子频率;计算由水面泡沫反射太阳背景光导致的噪声光子频率;计算由水面镜面反射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射单光子激光雷达发射的激光脉冲导致的平均噪声数量;计算单发脉冲总噪声光子数量;计算待测量水深的具体数值,将待测量水深的具体数值作为单光子激光雷达系统的最大测深深度。本发明可以快速准确地计算最大测深能力。

    基于单光子激光雷达背景噪声率的地表分类方法

    公开(公告)号:CN110501716B

    公开(公告)日:2021-03-16

    申请号:CN201910690511.3

    申请日:2019-07-29

    申请人: 武汉大学

    摘要: 本发明公开了一种基于单光子激光雷达背景噪声率的地表分类方法,首先根据镜面反射理论提出了水面光子反射噪声率的表达式,随后结合系统参数、环境参数与目标特性参数,建立了背景噪声率模型,分别给出了陆地背景噪声率与水体背景噪声率的数学表达式,最后计算得到地表分类噪声率阈值。根据陆地与水体背景噪声率的显著差异,可通过代入激光雷达原始点云数据的统计噪声率与噪声率阈值进行比较,判断地表类型。该分类方法不依赖于传统方法中需要用到的数字地形图或高分辨率遥感影像,采用的辅助数据易于获取,具有快速、高效的优点,可在沿海地区实现高精度的地表类型分类。将该方法应用于MABLE原始点云数据中,分类效果优异。

    星载激光测高仪指向角误差为非常数时的在轨标定方法

    公开(公告)号:CN109855652A

    公开(公告)日:2019-06-07

    申请号:CN201811593102.3

    申请日:2018-12-25

    申请人: 武汉大学

    IPC分类号: G01C25/00

    摘要: 一种星载激光测高仪指向角误差为非常数时的在轨标定方法,包括确定星载激光测高仪的激光指向角系统误差在俯仰和横滚方向的表达形式,构建待估计向量;建立角度系统误差是非常数时的激光脚点观测方程,利用线性最小二乘法估计初始值,利用非线性最小二乘LM算法迭代收敛估计,计算得出当前时刻的激光指向角在俯仰和横滚方向误差分量;进而计算当前次测量时刻的标定补偿指向角系统误差之后的激光脚点精确坐标,完成星载激光测高仪的指向角误差的在轨标定工作。相对于现有的指向角系统误差标定方法,本方法能够在指向角系统误差为非常数时进行标定,这是现有方法所不能完成的;并且能够兼容现有认为指向角系统误差为常数的情况,具有更好的普适性。

    一种单光子激光雷达多探测器条件下的测距精度评估方法

    公开(公告)号:CN108445471A

    公开(公告)日:2018-08-24

    申请号:CN201810254599.X

    申请日:2018-03-26

    申请人: 武汉大学

    IPC分类号: G01S7/497

    CPC分类号: G01S7/497

    摘要: 本发明涉及一种单光子激光雷达在多个探测器条件下的测距精度评估方法。本发明首先建立单光子激光雷达在多个探测器条件下的测距精度模型,测距精度由测距系统误差和随机误差组成,得出测距精度与激光雷达的系统参数、被测目标参数和测量时的环境参数的数学关系式。根据激光雷达的系统参数、被测目标参数和测量时的环境参数,可以快速评估出单光子激光雷达的测距精度。该测距精度评估方法,具有很好向下的兼容性,当探测器个数等于1时,与现有的单个探测器条件下单光子激光雷达测距精度评估方法相同,可以直接替代现有的单个探测器条件下单光子激光雷达测距精度评估方法。

    一种星载单光子激光雷达的最大测量深度评估方法

    公开(公告)号:CN111239713A

    公开(公告)日:2020-06-05

    申请号:CN202010191902.3

    申请日:2020-03-18

    申请人: 武汉大学

    IPC分类号: G01S7/497

    摘要: 本发明提出了一种星载单光子激光雷达的最大测量深度评估方法。计算单光子激光雷达进行水深测量时所采集的水下目标平均信号光子数量;计算由大气散射太阳背景光导致的噪声光子频率;计算由水面泡沫反射太阳背景光导致的噪声光子频率;计算由水面镜面反射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射太阳背景光导致的噪声光子频率;计算由水体粒子散射单光子激光雷达发射的激光脉冲导致的平均噪声数量;计算单发脉冲总噪声光子数量;计算待测量水深的具体数值,将待测量水深的具体数值作为单光子激光雷达系统的最大测深深度。本发明可以快速准确地计算最大测深能力。

    针对陆地目标的激光测高仪大气延迟测距误差修正方法

    公开(公告)号:CN107037439B

    公开(公告)日:2020-05-12

    申请号:CN201710194273.8

    申请日:2017-03-28

    IPC分类号: G01S17/08 G01S7/48

    摘要: 本发明属于激光遥感技术领域,特别涉及一种针对陆地目标的星载激光测高系统大气延迟误差修正方法。本发明首先推导了大气延迟误差与地表大气压强之间的理论关系式,进而简化了压高方程,根据地面气象站测得的气象站所在高度气压、海平面高度气压,计算每个气象站气压衰减因子,建立气压随高度变化的衰减模型。依据激光脚点的经纬度选取距离最近的k个气象站,根据气压衰减模型,计算每个气象站所在位置在待插值点海拔高度处的气压;根据反距离加权算法,计算待插值点地理位置处的气压。交叉验证结果表明,该方法的气压时空内插的精度高于目前基于NECP再分析资料的计算方法,在我国激光测高卫星的测量精度提高方面具有重要应用价值。

    针对陆地目标的激光测高仪大气延迟测距误差修正方法

    公开(公告)号:CN107037439A

    公开(公告)日:2017-08-11

    申请号:CN201710194273.8

    申请日:2017-03-28

    IPC分类号: G01S17/08 G01S7/48

    摘要: 本发明属于激光遥感技术领域,特别涉及一种针对陆地目标的星载激光测高系统大气延迟误差修正方法。本发明首先推导了大气延迟误差与地表大气压强之间的理论关系式,进而简化了压高方程,根据地面气象站测得的气象站所在高度气压、海平面高度气压,计算每个气象站气压衰减因子,建立气压随高度变化的衰减模型。依据激光脚点的经纬度选取距离最近的k个气象站,根据气压衰减模型,计算每个气象站所在位置在待插值点海拔高度处的气压;根据反距离加权算法,计算待插值点地理位置处的气压。交叉验证结果表明,该方法的气压时空内插的精度高于目前基于NECP再分析资料的计算方法,在我国激光测高卫星的测量精度提高方面具有重要应用价值。

    星载激光测高仪指向角误差为非常数时的在轨标定方法

    公开(公告)号:CN109855652B

    公开(公告)日:2021-08-17

    申请号:CN201811593102.3

    申请日:2018-12-25

    申请人: 武汉大学

    IPC分类号: G01C25/00

    摘要: 一种星载激光测高仪指向角误差为非常数时的在轨标定方法,包括确定星载激光测高仪的激光指向角系统误差在俯仰和横滚方向的表达形式,构建待估计向量;建立角度系统误差是非常数时的激光脚点观测方程,利用线性最小二乘法估计初始值,利用非线性最小二乘LM算法迭代收敛估计,计算得出当前时刻的激光指向角在俯仰和横滚方向误差分量;进而计算当前次测量时刻的标定补偿指向角系统误差之后的激光脚点精确坐标,完成星载激光测高仪的指向角误差的在轨标定工作。相对于现有的指向角系统误差标定方法,本方法能够在指向角系统误差为非常数时进行标定,这是现有方法所不能完成的;并且能够兼容现有认为指向角系统误差为常数的情况,具有更好的普适性。