-
公开(公告)号:CN116913317A
公开(公告)日:2023-10-20
申请号:CN202310859687.3
申请日:2023-07-13
IPC: G10L25/51 , G06N3/084 , G06N3/0464 , G10L25/90 , G10L25/30 , G10L21/0208
Abstract: 基于声重组特征网络的水面航行器声信号基频提取方法,属于基频提取领域。本发明解决了现有基频提取任务的声信号特征提取方法存在处理方式复杂、鲁棒性差的问题。本发明将待进行基频提取的声信号按照LHS算法产生的最小帧长切割成等长的音频段;采用LHS算法对所述等长的音频段的基频进行标记;采用声重组特征网络提取音频段的声信号的基频特征;采用基频提取网络利用基频特征对对应的音频段进行基频提取。本发明适用于基频提取。
-
公开(公告)号:CN114139984B
公开(公告)日:2024-08-20
申请号:CN202111470417.0
申请日:2021-12-03
Applicant: 哈尔滨工程大学
IPC: G06Q10/0635 , G08G1/01 , G06F18/2433 , G06N3/0464 , G06N3/042
Abstract: 一种基于流量与事故协同感知的城市交通事故风险预测方法,属于交通事故预警技术领域。本发明针对现有交通事故风险预测中没有深度结合交通流量信息,使用静态图邻接矩阵构建图神经网络预测效果不够好的问题。包括由节点时变特征输入模块获得节点时变特征矩阵;分别由事件动态图神经网络和异常流量动态图神经网络对节点时变特征矩阵进行特征提取,获得事故风险特征和流量风险特征;再由时间依赖模块进行时间依赖信息的捕捉,获得时空混合特征;由协同感知模块对时空混合特征和全局时变特征矩阵进行特征融合,获得事故风险预测值,结合事故风险替换值进行计算,获得损失函数用于模型训练。本发明用于交通事故风险预测。
-
公开(公告)号:CN111553389B
公开(公告)日:2023-06-13
申请号:CN202010271181.7
申请日:2020-04-08
Applicant: 哈尔滨工程大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V10/26 , G06N3/0464 , G06N5/01
Abstract: 一种用于理解深度学习模型决策机制的决策树生成方法,它属于深度学习模型的决策机制理解技术领域。本发明解决了在现有基于决策树的深度学习模型决策机制理解方法中需要对深度学习模型进行特殊处理,产生的理解效果有限,且现有方法复杂,对模型决策机制的理解造成影响的问题。本发明利用训练好的深度学习模型,通过使用局部解释的方法来得到输入变量的贡献值,从而最终构建出贡献分布矩阵。将贡献分布矩阵作为输入,利用平均贡献值差异作为划分标准,递归地分区生成模型的决策树,再对生成的决策树进行剪枝、验证最终得到最优解释树。本发明可以应用于深度学习模型的决策机制理解。
-
公开(公告)号:CN111001161B
公开(公告)日:2023-04-07
申请号:CN201911351336.1
申请日:2019-12-24
Applicant: 哈尔滨工程大学
Abstract: 一种基于二阶反向传播优先级的游戏策略获得方法,它属于智能化决策获取技术领域。本发明解决了在游戏策略的指挥决策过程中存在的数据利用率低以及策略质量低的问题。本发明方法结合了DPSCRM方法和BPTM方法,通过样本序列的累计奖赏值构建第一级奖赏值,可以获得高质量的策略;基于TD‑error构建优先级可以反向衰减传播的第二级优先级,可以提升数据利用率。本发明可以应用于游戏策略的获取。
-
公开(公告)号:CN114648017A
公开(公告)日:2022-06-21
申请号:CN202210386134.6
申请日:2022-04-13
Applicant: 哈尔滨工程大学
IPC: G06F40/211 , G06F40/295 , G06F40/284 , G06F16/35 , G06N3/04
Abstract: 一种基于异质图注意力网络的文档级关系抽取方法,具体涉及一种基于异质图注意力网络的文档级实体关系的抽取方法,本发明为了解决现有的图神经网络在获取节点表示时忽略了图中节点和边,导致关系抽取的准确率低的问题,它包括以下步骤:S1、获取文档文本;S2、建立文档级关系抽取模型,将S1中获取的文档文本输入文档级关系抽取模型内进行训练,输出所述文档文本的关系,得到训练好的文档级关系抽取模型;S3、将待抽取文档级关系的文档文本输入S2中训练好的文档级关系抽取模型内,得到对应的文档文本的关系。属于计算机技术领域。
-
公开(公告)号:CN111626343B
公开(公告)日:2022-05-03
申请号:CN202010403756.6
申请日:2020-05-13
Applicant: 哈尔滨工程大学
IPC: G06K9/62 , G06F40/295
Abstract: 一种基于PGM与PSO聚类的船舰数据关系抽取方法,涉及数据处理技术领域,针对现有技术中在构建面向知识图谱过程中关系抽取存在的船舰数据抽取准确率低以及效率低的问题,本发明用一个概率图模型来计算相似度分数,依据这个分数对不同候选对象之间的相似程度进行划分,以使实体对更好的进行匹配,使用灵活的相似度准则来消除实体匹配的歧义,可以抽取更多关系。对现有的聚类算法中的适应度函数进行了优化,增加了两个准则,不易局部最优解的情况,使其能够加速收敛,从而获得最优解,在构建面向知识图谱过程中关系抽取准确率以及效率高。
-
公开(公告)号:CN111626341B
公开(公告)日:2022-04-08
申请号:CN202010397828.0
申请日:2020-05-12
Applicant: 哈尔滨工程大学
Abstract: 一种面向水下目标识别的特征级信息融合方法,它属于水下目标识别技术领域。本发明解决了原始水下声音数据本身携带的目标特性有限,采用专家特征提取方法很难从原始数据中提取出有效的特征,且采用现有方法对提取出的特征信息融合效果不佳的问题。本发明对采集的原始声音数据进行处理,使处理过的数据不仅包含目标水声特性,还包含了目标方位特性与速度变化特性。再采用一个端到端的深度神经网络完成后续的特征提取和信息融合工作,克服了采用专家特征提取方法很难从原始数据中提取出有效特征的问题,而且通过实验证明了本发明特征信息融合方法的有效性。本发明可以应用于水下目标识别。
-
公开(公告)号:CN113988201A
公开(公告)日:2022-01-28
申请号:CN202111294685.1
申请日:2021-11-03
Applicant: 哈尔滨工程大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 一种基于神经网络的多模态情感分类方法,具体涉及一种基于多模态情感分类的神经网络模型的分类方法,本发明为了解决传统的情感分类方法大多针对单一类型的数据,并不能处理社交网络坏境下多模态的混合信息的问题,它包括提取待预测情感图片中的多模态数据;提取多模态数据中各单模态的原始向量;根据各模态的原始向量计算各模态的指导向量;获得各模态的重构特征向量;利用注意力机制对得到的各模态的重构特征向量进行加权平均,生成融合特征向量;将得到的融合特征向量输入至情感分类模型中,输出分类结果。本发明用于对社交网络坏境下多模态的混合信息进行情感分类,属于自然语言处领域。
-
公开(公告)号:CN107871140B
公开(公告)日:2021-10-01
申请号:CN201711085758.X
申请日:2017-11-07
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 本发明提供的是一种基于斜率弹性相似性度量方法。步骤一:输入时间序列x和y及过滤参数λ,进行l1趋势过滤,输出折线X和Y;步骤二:计算折线X和Y各分段加权斜率,折线X和Y用加权斜率表示为kx和ky;设定等距间隔参数d,等距插入加权斜率;步骤三:经过插值处理后,形成两个新不等长序列,使用动态时间弯曲距离DTW计算不等长序列的趋势距离。本发明把时间序列通过滤波特征表示为折线段,保留了趋势信息并实现了降维;线段权重斜率可实现趋势的度量比较;通过等距插值以适应DTW等间隔计算,实现了弹性度量。
-
公开(公告)号:CN107562778B
公开(公告)日:2021-09-28
申请号:CN201710599251.X
申请日:2017-07-21
Applicant: 哈尔滨工程大学
IPC: G06F16/2458 , G06F16/26
Abstract: 本发明公开了一种基于偏离特征的离群点挖掘方法,包括以下步骤:(1)将数据集的各个维度划分为h个等间距的间隔,则整个数据集被划分为hd个网格;(2)将每个数据点与网格索引做一个关联,如果一个网格中不包含数据点,则不考虑该网格;(3)对于划分形成的空间中的各个网格,求出网格的质心,并计算质心的局部离群因子;(4)计算每个数据对象的局部离群因子,数据集中对象的局部离群因子等于所属网格质心的离群因子。本发明在检测数据集中的离群点时,采用F_LOF检测算法将数据空间划分为网格,基于网格的质心来计算数据点的局部离群因子,降低了计算时间,提高检测效率,表现出了其优越性。
-
-
-
-
-
-
-
-
-