一种面向卷积神经网络分类结果的可视化算法

    公开(公告)号:CN109858506B

    公开(公告)日:2022-11-18

    申请号:CN201810519569.7

    申请日:2018-05-28

    Abstract: 本发明公开了一种面向卷积神经网络分类结果的可视化算法,属于计算机视觉与数字图像处理技术领域。本发明在全连接层使用相关性传播算法,得到最后一层卷积层中每个神经元对最终输出结果的贡献的大小,根据其贡献计算出该卷积神经网络的类激活映射图。在得到类激活映射图之后,也就获得了最后一层卷积层中对分类结果有贡献的神经元的位置,根据提出的基于位置信息的传播算法,将卷积层中支持分类的神经元位置逐层向前重定向,直到输入层,从而得到输入图像中对输出结果有贡献的像素位置集合,最终得到可以解释卷积神经网络分类依据的可视化图像,本发明在解释卷积神经网络的分类方面具有更高的准确性,且在解释分类决策时能区分类别之间的特征。

    一种基于注意力的卷积神经网络优化方法

    公开(公告)号:CN108875592A

    公开(公告)日:2018-11-23

    申请号:CN201810519139.5

    申请日:2018-05-28

    Abstract: 本发明提供的是一种基于注意力模型的卷积神经网络优化方法。首先对水下目标的噪声数据进行分段,针对每段噪声数据提取其MFCC,其目的是将目标噪声数据变成定长的矢量化数据。然后,将得到的定长的矢量化数据按实验过程中水听器的排布位置以及其时序关系进行拼接,形成一个完整的时段水听阵特征,继而再将形成的水听阵特征转成对应的图片以作为输入数据集输入到训练网络中。本发明通过试验对模型在使用情况的结果分析以及对模型进行修改与优化,深度学习对水下目标识别识别率的得到10%‑15%的提升。

    基于力引导的点布局优化算法

    公开(公告)号:CN109005048A

    公开(公告)日:2018-12-14

    申请号:CN201810519647.3

    申请日:2018-05-28

    Abstract: 本发明属于可视化数据技术领域,公开了基于力引导的点布局优化算法,包括如下步骤:步骤(1):定义节点集合,边集合和无向图G;步骤(2):设置系统中吸引力的总大小,系统中排斥力的总大小和总量级函数;步骤(3):定义M(0);步骤(4):用算法聚集阶段迭代的总数和算法分裂阶段迭代的总数表示;步骤(5):计算吸引力和排斥力在X轴方向和Y轴方向上的分量;步骤(6):用笛卡尔坐标空间内X、Y轴方向上的排斥力和吸引力表示第t次迭代时节点在X、Y轴方向上受到的合力,然后获取节点迭代后的坐标;步骤(7):迭代次数等于一个固定值时,迭代停止,算法结束。本发明解决传统算法中迭代次数多的问题,具有更好的扩展性。

    一种基于PGM与PSO聚类的船舰数据关系抽取方法

    公开(公告)号:CN111626343A

    公开(公告)日:2020-09-04

    申请号:CN202010403756.6

    申请日:2020-05-13

    Abstract: 一种基于PGM与PSO聚类的船舰数据关系抽取方法,涉及数据处理技术领域,针对现有技术中在构建面向知识图谱过程中关系抽取存在的船舰数据抽取准确率低以及效率低的问题,本发明用一个概率图模型来计算相似度分数,依据这个分数对不同候选对象之间的相似程度进行划分,以使实体对更好的进行匹配,使用灵活的相似度准则来消除实体匹配的歧义,可以抽取更多关系。对现有的聚类算法中的适应度函数进行了优化,增加了两个准则,不易局部最优解的情况,使其能够加速收敛,从而获得最优解,在构建面向知识图谱过程中关系抽取准确率以及效率高。

    一种面向水下声音信号分类的迁移学习方法

    公开(公告)号:CN109284662A

    公开(公告)日:2019-01-29

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种面向水下声音信号分类的迁移学习方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种面向水下声音信号分类的迁移学习方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种基于迁移学习的水下声音信号分类方法

    公开(公告)号:CN109284662B

    公开(公告)日:2022-02-22

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种基于迁移学习的水下声音信号分类方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种基于迁移学习的水下声音信号分类方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种面向水下目标识别的卷积神经网络优化方法

    公开(公告)号:CN108846323A

    公开(公告)日:2018-11-20

    申请号:CN201810519571.4

    申请日:2018-05-28

    Abstract: 本发明公开了一种面向水下目标识别的卷积神经网络优化方法,属于水下目标识别技术领域,本发明将原始声音数据通过短时傅里叶变换等操作转化为灰度声谱图像,之后将单层SAE判别式分类法和多层SAE重建式分类法分别添加到Alexnet模型当中,将灰度声谱图像进行打标签和训练,用灰度声谱图像的70%作为训练集,用其余的30%作为测试集,将训练集和测试集分别应用在改进前的Alexnet模型和改进后的Alexnet模型中进行准确率和训练时间对比实验,并对测试的结果进行分析。本发明对卷积神经网络中的目标分类层进行优化,解决了当前卷积神经网络在水下目标识别领域的分类准确率不高等问题,较改进之前更适用于水下目标识别领域,对水下目标领域取得了更好的分类效果。

    一种基于PGM与PSO聚类的船舰数据关系抽取方法

    公开(公告)号:CN111626343B

    公开(公告)日:2022-05-03

    申请号:CN202010403756.6

    申请日:2020-05-13

    Abstract: 一种基于PGM与PSO聚类的船舰数据关系抽取方法,涉及数据处理技术领域,针对现有技术中在构建面向知识图谱过程中关系抽取存在的船舰数据抽取准确率低以及效率低的问题,本发明用一个概率图模型来计算相似度分数,依据这个分数对不同候选对象之间的相似程度进行划分,以使实体对更好的进行匹配,使用灵活的相似度准则来消除实体匹配的歧义,可以抽取更多关系。对现有的聚类算法中的适应度函数进行了优化,增加了两个准则,不易局部最优解的情况,使其能够加速收敛,从而获得最优解,在构建面向知识图谱过程中关系抽取准确率以及效率高。

    一种面向卷积神经网络分类结果的可视化算法

    公开(公告)号:CN109858506A

    公开(公告)日:2019-06-07

    申请号:CN201810519569.7

    申请日:2018-05-28

    Abstract: 本发明公开了一种面向卷积神经网络分类结果的可视化算法,属于计算机视觉与数字图像处理技术领域。本发明在全连接层使用相关性传播算法,得到最后一层卷积层中每个神经元对最终输出结果的贡献的大小,根据其贡献计算出该卷积神经网络的类激活映射图。在得到类激活映射图之后,也就获得了最后一层卷积层中对分类结果有贡献的神经元的位置,根据提出的基于位置信息的传播算法,将卷积层中支持分类的神经元位置逐层向前重定向,直到输入层,从而得到输入图像中对输出结果有贡献的像素位置集合,最终得到可以解释卷积神经网络分类依据的可视化图像,本发明在解释卷积神经网络的分类方面具有更高的准确性,且在解释分类决策时能区分类别之间的特征。

Patent Agency Ranking