一种面向卷积神经网络分类结果的可视化算法

    公开(公告)号:CN109858506B

    公开(公告)日:2022-11-18

    申请号:CN201810519569.7

    申请日:2018-05-28

    Abstract: 本发明公开了一种面向卷积神经网络分类结果的可视化算法,属于计算机视觉与数字图像处理技术领域。本发明在全连接层使用相关性传播算法,得到最后一层卷积层中每个神经元对最终输出结果的贡献的大小,根据其贡献计算出该卷积神经网络的类激活映射图。在得到类激活映射图之后,也就获得了最后一层卷积层中对分类结果有贡献的神经元的位置,根据提出的基于位置信息的传播算法,将卷积层中支持分类的神经元位置逐层向前重定向,直到输入层,从而得到输入图像中对输出结果有贡献的像素位置集合,最终得到可以解释卷积神经网络分类依据的可视化图像,本发明在解释卷积神经网络的分类方面具有更高的准确性,且在解释分类决策时能区分类别之间的特征。

    一种基于迁移学习的水下声音信号分类方法

    公开(公告)号:CN109284662B

    公开(公告)日:2022-02-22

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种基于迁移学习的水下声音信号分类方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种基于迁移学习的水下声音信号分类方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种面向水下目标识别的卷积神经网络优化方法

    公开(公告)号:CN108846323A

    公开(公告)日:2018-11-20

    申请号:CN201810519571.4

    申请日:2018-05-28

    Abstract: 本发明公开了一种面向水下目标识别的卷积神经网络优化方法,属于水下目标识别技术领域,本发明将原始声音数据通过短时傅里叶变换等操作转化为灰度声谱图像,之后将单层SAE判别式分类法和多层SAE重建式分类法分别添加到Alexnet模型当中,将灰度声谱图像进行打标签和训练,用灰度声谱图像的70%作为训练集,用其余的30%作为测试集,将训练集和测试集分别应用在改进前的Alexnet模型和改进后的Alexnet模型中进行准确率和训练时间对比实验,并对测试的结果进行分析。本发明对卷积神经网络中的目标分类层进行优化,解决了当前卷积神经网络在水下目标识别领域的分类准确率不高等问题,较改进之前更适用于水下目标识别领域,对水下目标领域取得了更好的分类效果。

    一种基于水下目标及环境信息特征的声音生成方法

    公开(公告)号:CN111627419B

    公开(公告)日:2022-03-22

    申请号:CN202010387814.0

    申请日:2020-05-09

    Abstract: 一种基于水下目标及环境信息特征的声音生成方法,它属于水声信号生成研究领域。本发明解决了利用传统特征提取方法构造出的水下目标声音信号特征字典和环境声音信号特征字典进行水声信号生成时会导致生成的水声信号的效果差,以及现有TTS声音生成模型在水声信号生成上的应用受到限制的问题。本发明结合听觉注意机制的特点,对水下目标声音信号和环境声音信号进行特征提取时将其特征显著化,提高水下目标声音信号和环境声音信号特征字典的特征准确度。将特征字典作为声音生成模型的发声字典,嵌入声音生成模型,提升了生成的水声信号的效果,本发明使TTS的应用领域从对人类语音的生成扩展到对水声信号的生成。本发明方法可以应用于水声信号的生成。

    一种基于知识图谱的关系预测方法

    公开(公告)号:CN108694469A

    公开(公告)日:2018-10-23

    申请号:CN201810589288.9

    申请日:2018-06-08

    CPC classification number: G06Q10/04

    Abstract: 本发明为一种基于知识图谱的关系预测方法,将知识图谱利用无向图来表示,提出了一种改进的结合了双向关系路径和嵌入式的混合关系预测算法,包括如下步骤:(1)将三元组数据集构建一个有效的知识图谱,并初始化参数;(2)对知识图谱中每个实体和关系利用TransE算法进行训练,将实体和关系嵌入到一个低维的向量空间中;(3)抽取出每个三元组的关系标签,构建每个关系的子图;(4)在每个关系子图上,通过迭代的方式发现每个实体之间的可达路径,并根据图结构划分子图,对每个可达路径的可靠性进行计算;(5)迭代每两个没有直接边连接的实体,通过构造的联合评价函数和损失函数来评估两个实体之间是否存在隐含关系;(6)补全知识图谱结构。

    一种基于斜率弹性相似性度量方法

    公开(公告)号:CN107871140A

    公开(公告)日:2018-04-03

    申请号:CN201711085758.X

    申请日:2017-11-07

    CPC classification number: G06K9/6215

    Abstract: 本发明提供的是一种基于斜率弹性相似性度量方法。步骤一:输入时间序列x和y及过滤参数λ,进行l1趋势过滤,输出折线X和Y;步骤二:计算折线X和Y各分段加权斜率,折线X和Y用加权斜率表示为kx和ky;设定等距间隔参数d,等距插入加权斜率;步骤三:经过插值处理后,形成两个新不等长序列,使用动态时间弯曲距离DTW计算不等长序列的趋势距离。本发明把时间序列通过滤波特征表示为折线段,保留了趋势信息并实现了降维;线段权重斜率可实现趋势的度量比较;通过等距插值以适应DTW等间隔计算,实现了弹性度量。

    一种面向水下声音信号分类的迁移学习方法

    公开(公告)号:CN109284662A

    公开(公告)日:2019-01-29

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种面向水下声音信号分类的迁移学习方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种面向水下声音信号分类的迁移学习方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种基于斜率弹性相似性度量方法

    公开(公告)号:CN107871140B

    公开(公告)日:2021-10-01

    申请号:CN201711085758.X

    申请日:2017-11-07

    Abstract: 本发明提供的是一种基于斜率弹性相似性度量方法。步骤一:输入时间序列x和y及过滤参数λ,进行l1趋势过滤,输出折线X和Y;步骤二:计算折线X和Y各分段加权斜率,折线X和Y用加权斜率表示为kx和ky;设定等距间隔参数d,等距插入加权斜率;步骤三:经过插值处理后,形成两个新不等长序列,使用动态时间弯曲距离DTW计算不等长序列的趋势距离。本发明把时间序列通过滤波特征表示为折线段,保留了趋势信息并实现了降维;线段权重斜率可实现趋势的度量比较;通过等距插值以适应DTW等间隔计算,实现了弹性度量。

    一种基于水下目标及环境信息特征的声音生成方法

    公开(公告)号:CN111627419A

    公开(公告)日:2020-09-04

    申请号:CN202010387814.0

    申请日:2020-05-09

    Abstract: 一种基于水下目标及环境信息特征的声音生成方法,它属于水声信号生成研究领域。本发明解决了利用传统特征提取方法构造出的水下目标声音信号特征字典和环境声音信号特征字典进行水声信号生成时会导致生成的水声信号的效果差,以及现有TTS声音生成模型在水声信号生成上的应用受到限制的问题。本发明结合听觉注意机制的特点,对水下目标声音信号和环境声音信号进行特征提取时将其特征显著化,提高水下目标声音信号和环境声音信号特征字典的特征准确度。将特征字典作为声音生成模型的发声字典,嵌入声音生成模型,提升了生成的水声信号的效果,本发明使TTS的应用领域从对人类语音的生成扩展到对水声信号的生成。本发明方法可以应用于水声信号的生成。

Patent Agency Ranking