-
公开(公告)号:CN108876012B
公开(公告)日:2021-08-13
申请号:CN201810519625.7
申请日:2018-05-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种空间众包任务分配方法,属于互联网技术领域,本发明分别设计了用于计算任务处理优先级的TPC方法、用于选择工人的WFC方法以及用于任务地点选择的MLS方法,基于这三个方法提出了一种空间众包任务分配方法,目标是在满足各种约束的条件下,保证任务分配总数以及平台收益,并最大化任务分配的总收益。
-
公开(公告)号:CN112417760A
公开(公告)日:2021-02-26
申请号:CN202011309350.8
申请日:2020-11-20
Applicant: 哈尔滨工程大学
Abstract: 基于竞争混合网络的舰船控制方法,本发明涉及舰船控制方法。本发明的目的是为了解决现有舰船在复杂环境中控制精度低的问题。过程为:一、建立个体智能体网络模型;二、建立优势混合网络模型;三、建立状态值混合网络模型;四、将个体观测历史输入到个体智能体网络模型中得到个体优势值函数以及个体状态值函数;将个体优势值函数传给优势混合网络模型,优势混合网络模型输出联合优势函数值;将个体状态值函数传给状态值混合网络模型,状态值混合网络模型输出联合状态值混合值;通过将联合优势函数值与联合状态值混合值相加得到联合动作值函数。本发明用于舰船控制领域。
-
公开(公告)号:CN109284662A
公开(公告)日:2019-01-29
申请号:CN201810766508.0
申请日:2018-07-12
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向水下声音信号分类的迁移学习方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种面向水下声音信号分类的迁移学习方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。
-
公开(公告)号:CN109189862A
公开(公告)日:2019-01-11
申请号:CN201810766488.7
申请日:2018-07-12
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向科技情报分析的知识库构建方法,属于计算机知识库构建领域。提出了CWATT-BiLSTM-LSTMd模型用于实体抽取、RL-TreeLSTM模型用于实体关系抽取。实体抽取采用编码-解码模式,BiLSTM(双向长短期记忆网络)用于编码,LSTMd(长短期记忆网络)用于解码,并且对嵌入层和解码层进行了改进,然后使用此模型对科技情报领域的语料进行实体抽取。在实体抽取的基础之上,基于强化深度学习的思想提出RL-TreeLSTM模型对实体之间的关系进行抽取。RL-TreeLSTM模型分为两个部分:选择器和分类器。选择器选择有效的句子传入分类器,以降低远程监督方法带来的噪音;分类器对有效句子进行实体关系抽取,提高关系抽取的准确率。
-
公开(公告)号:CN109005048A
公开(公告)日:2018-12-14
申请号:CN201810519647.3
申请日:2018-05-28
Applicant: 哈尔滨工程大学
IPC: H04L12/24
Abstract: 本发明属于可视化数据技术领域,公开了基于力引导的点布局优化算法,包括如下步骤:步骤(1):定义节点集合,边集合和无向图G;步骤(2):设置系统中吸引力的总大小,系统中排斥力的总大小和总量级函数;步骤(3):定义M(0);步骤(4):用算法聚集阶段迭代的总数和算法分裂阶段迭代的总数表示;步骤(5):计算吸引力和排斥力在X轴方向和Y轴方向上的分量;步骤(6):用笛卡尔坐标空间内X、Y轴方向上的排斥力和吸引力表示第t次迭代时节点在X、Y轴方向上受到的合力,然后获取节点迭代后的坐标;步骤(7):迭代次数等于一个固定值时,迭代停止,算法结束。本发明解决传统算法中迭代次数多的问题,具有更好的扩展性。
-
公开(公告)号:CN108776763A
公开(公告)日:2018-11-09
申请号:CN201810589946.4
申请日:2018-06-08
Applicant: 哈尔滨工程大学
IPC: G06F21/62
Abstract: 本发明公开了一种基于属性相关的差分隐私保护方法,属于信息安全技术领域。本发明采取投影转换的思想,提出了新的面向属性相关的隐私保护方法。该方法不仅考虑了属性之间存在相关性的情况,而且利用这种相关关系减少噪声的加入。即利用最大信息系数衡量各敏感属性相关关系,构建最大信息系数矩阵;从而构造投影算子,获得投影矩阵,该结构的使用使得维度降低,在提供相同的隐私保证的情况下,所需噪声数减少。
-
公开(公告)号:CN109858506B
公开(公告)日:2022-11-18
申请号:CN201810519569.7
申请日:2018-05-28
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种面向卷积神经网络分类结果的可视化算法,属于计算机视觉与数字图像处理技术领域。本发明在全连接层使用相关性传播算法,得到最后一层卷积层中每个神经元对最终输出结果的贡献的大小,根据其贡献计算出该卷积神经网络的类激活映射图。在得到类激活映射图之后,也就获得了最后一层卷积层中对分类结果有贡献的神经元的位置,根据提出的基于位置信息的传播算法,将卷积层中支持分类的神经元位置逐层向前重定向,直到输入层,从而得到输入图像中对输出结果有贡献的像素位置集合,最终得到可以解释卷积神经网络分类依据的可视化图像,本发明在解释卷积神经网络的分类方面具有更高的准确性,且在解释分类决策时能区分类别之间的特征。
-
公开(公告)号:CN108932528A
公开(公告)日:2018-12-04
申请号:CN201810589956.8
申请日:2018-06-08
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 本发明公开了变色龙算法中相似性度量及截断方法,属于凝聚型层次聚类算法技术领域。变色龙在稀疏图上运行,其中节点表示数据项,加权边表示数据项之间的相似性,变色龙通过使用两阶段算法找出数据集中的簇,在第一阶段,根据数据集构造出一个k-最近邻图Gk,使用图分区算法将数据项分为几个相对较小的子集群,在第二阶段,它使用一种算法,通过重复组合这些子集群来找到真正的集群;该改进算法通过引入递归二分法、flood fill漫水填充法以及第一跳截断等对传统的变色龙聚类算法进行了改进,还提出了一种能够从修改的变色龙树状图中自动选择最佳聚类结果的方法。
-
公开(公告)号:CN108920503A
公开(公告)日:2018-11-30
申请号:CN201810519638.4
申请日:2018-05-28
Applicant: 哈尔滨工程大学
IPC: G06F17/30
Abstract: 本发明提供了一种基于社交网络信任度的微视频个性化推荐算法,属于计算机算法领域。步骤如下:1.利用全局信任度和局部信任的差值计算用户偏差度;2.在传统相似度的计算方法中加入置信度因素;3.利用信任对时间的依赖性,信任网络发生动态地演化;4.创建用户的相似网络和信任络组成的双网络时域演化模型;5.根据DNTDEM的建立,得到一个全新的用户信任网络;6.利用LDA模型对推荐内容进行补充;7.预测的用户应该与其的情感邻居相似,然后通过最小化误差平方值对其进行优化。本发明可以有效识别高质量的新形式的用户生成内容(UGC),并向适当的用户进行推荐;还可以减轻其他用户主观偏见对推荐内容的影响,从而更加客观的向对象用户提供更优质的推荐内容。
-
公开(公告)号:CN112417760B
公开(公告)日:2023-01-17
申请号:CN202011309350.8
申请日:2020-11-20
Applicant: 哈尔滨工程大学
Abstract: 基于竞争混合网络的舰船控制方法,本发明涉及舰船控制方法。本发明的目的是为了解决现有舰船在复杂环境中控制精度低的问题。过程为:一、建立个体智能体网络模型;二、建立优势混合网络模型;三、建立状态值混合网络模型;四、将个体观测历史输入到个体智能体网络模型中得到个体优势值函数以及个体状态值函数;将个体优势值函数传给优势混合网络模型,优势混合网络模型输出联合优势函数值;将个体状态值函数传给状态值混合网络模型,状态值混合网络模型输出联合状态值混合值;通过将联合优势函数值与联合状态值混合值相加得到联合动作值函数。本发明用于舰船控制领域。
-
-
-
-
-
-
-
-
-