-
公开(公告)号:CN112731309A
公开(公告)日:2021-04-30
申请号:CN202110011684.5
申请日:2021-01-06
申请人: 哈尔滨工程大学 , 上海无线电设备研究所
摘要: 本发明属于雷达干扰信号识别技术领域,具体涉及一种基于双线性高效神经网络的有源干扰识别方法。本发明针对现有干扰信号在低干噪比下识别难度大、依靠先验知识的问题,设计了更智能化的干扰识别方法。本发明通过对多种干扰信号进行建模分析,从信号时频图像的角度,采用双线性高效神经网络进行识别,在低干噪比下依然能获得很高的准确率。仿真实验证明了双线性高效神经网络用来识别干扰信号的有效性,相对于人工提取特征的传统方式,精度更高、更为简便。本发明无需干扰信号特征的先验知识,在低干噪比下具有一定的鲁棒性,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN116243249A
公开(公告)日:2023-06-09
申请号:CN202310218280.2
申请日:2023-03-09
申请人: 哈尔滨工程大学 , 上海无线电设备研究所
摘要: 本发明提供一种基于深度强化学习的雷达智能干扰抑制决策方法,通过将深度学习网络与强化学习算法相结合,使得智能体雷达能够在一定底噪环境中与干扰机所释放的干扰信号不断进行博弈操作从而学习并优化干扰抑制策略;通过对抑制前后的回波信号进行脉压操作以验证抑制后恢复效果。此发明避免了人工判决在速度和准确性方面的不足,优化了传统强化学习算法需要Q‑Table进行成果存储调用的策略效果,提高了决策系统在干扰判决特征和干扰抑制动作方面的可拓展性。
-
公开(公告)号:CN116243248A
公开(公告)日:2023-06-09
申请号:CN202310218279.X
申请日:2023-03-09
申请人: 哈尔滨工程大学 , 上海无线电设备研究所
摘要: 本发明提供一种基于多标签分类网络的多分量干扰信号识别方法,将一维干扰信号经过时频变换转换成时频图像,利用MobileViT‑v2模块的全局特征提取能力对多分量干扰信号进行高效分类识别。此发明解决了当前多类别分类网络对训练集中未曾出现的信号组合无法识别的问题,对训练样本数的要求较低,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN112731309B
公开(公告)日:2022-09-02
申请号:CN202110011684.5
申请日:2021-01-06
申请人: 哈尔滨工程大学 , 上海无线电设备研究所
摘要: 本发明属于雷达干扰信号识别技术领域,具体涉及一种基于双线性高效神经网络的有源干扰识别方法。本发明针对现有干扰信号在低干噪比下识别难度大、依靠先验知识的问题,设计了更智能化的干扰识别方法。本发明通过对多种干扰信号进行建模分析,从信号时频图像的角度,采用双线性高效神经网络进行识别,在低干噪比下依然能获得很高的准确率。仿真实验证明了双线性高效神经网络用来识别干扰信号的有效性,相对于人工提取特征的传统方式,精度更高、更为简便。本发明无需干扰信号特征的先验知识,在低干噪比下具有一定的鲁棒性,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN114609598B
公开(公告)日:2024-09-20
申请号:CN202210177716.3
申请日:2022-02-25
申请人: 哈尔滨工程大学
IPC分类号: G01S7/38
摘要: 本发明属于电子对抗领域,具体涉及基于图像反演的合成孔径雷达(SAR)场景欺骗干扰方法,包括:步骤一:SAR图像反演预处理,1.1SAR图像干扰场景设定,1.2生成SAR图像反演模板复数据;步骤二:采用CS反演算法反演图像至回波,2.1方位相位反演,2.2距离相位、SRC及一致RCMC反演,2.3补余RCMC反演;步骤三,干扰数据生成。本发明对设定的SAR场景图像进行随机相位补偿预处理之后,采用CS反演算法直接获取欺骗干扰信号。较于传统欺骗干扰,无需经过复杂的信号迭代卷积,能够更加直观的生成干扰图像模板对应的欺骗信号,且可基于此方法在一定程度上通过不同的图像扩展干扰信号数据库,突破了当前SAR欺骗干扰信号生成的局限性。
-
公开(公告)号:CN114254141B
公开(公告)日:2024-08-23
申请号:CN202111563815.7
申请日:2021-12-20
申请人: 哈尔滨工程大学
IPC分类号: G06F16/51 , G06F16/55 , G06T7/10 , G06V10/75 , G06V10/774 , G06V10/764
摘要: 本发明属于雷达信号分选技术领域,具体涉及一种基于深度分割的端到端雷达信号分选方法。本发明通过对PDW的处理和深度分割网络的结合实现未知复杂环境下的端到端雷达信号分选,操作简单,无需按照传统的预分选和主分选每一步都预设参数、阈值等信息。本发明能够分选脉间调制类型多变的雷达信号、时域频域交叠严重的PDW,适应复杂环境和未知信号。此外本发明还能够分选出从未训练过且没有先验信息的信号,对于脉冲丢失20%的情况也适用良好。
-
公开(公告)号:CN118194172A
公开(公告)日:2024-06-14
申请号:CN202410291905.2
申请日:2024-03-14
IPC分类号: G06F18/2431 , G06F18/25 , G06F18/2131 , G06N3/045 , G06N3/0464 , H04K3/00
摘要: 一种基于Mobile‑Former网络的通信干扰信号识别方法,涉及通信领域。本发明是为了解决在复合干扰信号识别时,干扰信号类别数呈指数增长,使网络的训练复杂度增加、提取的特征差异减小、干扰信号识别性能下降的问题。本发明以Mobile‑Former网络为特征提取网络,分别提取信号时频图与频谱图的特征,并搭建了特征融合网络,将提取出的时频图特征与频谱图特征进行融合,获得更丰富的特征,有效提高了在低干噪比下的干扰信号识别性能;并且利用多标签分类方法,实现了单一干扰和复合干扰信号的识别,通过选取合适的阈值对网络的输出向量进行判决,得到最终的识别结果。
-
公开(公告)号:CN114584236B
公开(公告)日:2023-12-15
申请号:CN202210170656.2
申请日:2022-02-24
申请人: 哈尔滨工程大学
IPC分类号: H04B17/391 , H04W24/06 , H04B7/0413 , G06N3/04 , G06N3/084
摘要: 本发明提供一种基于RIGS算法的大规模MIMO系统检测模型构建方法,其步骤包括:S1:采用交替迭代的方式将Richardson(RI)算法和Gauss‑Seidel(GS)算法相结合,得到RIGS迭代算法;S2:引入模型驱动的深度学习方法,将RIGS算法进行展开,并加入可训练向量,构造RGNet(RI and GS Network)检测网络;S3:对构建的网络进行训练,得到训练后的检测模型。本发明设计的RGNet检测模型可以显著降低空间相关性对检测精度的影响,并且能够快速收敛到精确解。
-
公开(公告)号:CN116953637A
公开(公告)日:2023-10-27
申请号:CN202310887599.4
申请日:2023-07-19
申请人: 哈尔滨工程大学
摘要: 基于视觉网络的SAR欺骗干扰效果评估方法,它属于电子对抗领域。本发明解决了采用现有SAR欺骗干扰效果评估方法无法对不同参数类型存在不同程度侦察误差的情况进行评估的问题。本发明方法具体为:步骤一、生成包含SAR参数侦察误差的干扰样本,将生成的干扰样本作为训练集中的输入,将干扰样本对应的参数误差类型和参数误差程度作为训练集中的输出;步骤二、搭建视觉网络模型;步骤三、利用训练集对搭建的视觉网络模型进行训练;步骤四、将待评估的干扰样本输入训练好的视觉网络模型,通过训练好的视觉网络模型输出对待评估干扰样本的参数误差类型和参数误差程度的评估结果。本发明方法可以应用于SAR欺骗干扰效果评估。
-
公开(公告)号:CN110133632B
公开(公告)日:2023-05-02
申请号:CN201910416928.0
申请日:2019-05-20
申请人: 哈尔滨工程大学
摘要: 本发明属于信息与通信工程的脉内信号类型识别领域,具体涉及一种基于CWD时频分析的复合调制信号识别方法。本发明利用了CWD算法对脉冲采样信号进行时频图像分析,能针对多种常规信号和多种复合调制信号进行分类识别。本发明相对于一般的瞬时相位法和短时傅里叶变换等时频分析方法有着更好的抗噪声性能,在较低信噪比的情况下也有良好的识别性能。
-
-
-
-
-
-
-
-
-