一种基于深度Q网络的UUV实时避碰规划方法

    公开(公告)号:CN110716574A

    公开(公告)日:2020-01-21

    申请号:CN201910934428.6

    申请日:2019-09-29

    Abstract: 本发明属于UUV控制技术领域,具体涉及一种基于深度Q网络的UUV实时避碰规划方法。本发明使网络体系在复杂环境的局部避碰规划时具有自我学习的能力实现端到端模型,不对输入的声呐数据进行人工提取特征和特征匹配,直接从原始数据集上学习状态与动作的映射关系,将深度学习和强化学习相结合应用到避碰规划问题的解决上。本发明使用深度强化学习,无需像深度学习那样进行大规模的采样和做标签,也不像传统的方法需建立环境和UUV本身的数学模型,无需环境的模型,采用强化学习不会因为路径过于复杂而无法执行策略,使其在实际应用中缩短了项目的开发周期、实施更加简洁、高效、鲁棒性高。

    一种基于LSTM网络的UUV实时避碰规划方法

    公开(公告)号:CN108319293B

    公开(公告)日:2021-01-12

    申请号:CN201810043820.7

    申请日:2018-01-17

    Abstract: 本发明公开了一种基于LSTM网络的UUV实时避碰规划方法属于神经网络技术领域和实时避障技术领域。包括步骤:构建全局坐标系和局部坐标系,建立声纳仿真模型;设计用于实时避碰规划的LSTM网络;构建数据集;利用训练集中数据训练LSTM网络,得到基于LSTM网络的实时避碰规划器;将声纳探测信息及目标点信息输入至基于LSTM网络的避碰规划器,获得UUV下一时刻的转艏及速度的调整指令。本发明设计的用于UUV实时避碰规划的LSTM网络,不仅有强大的学习能力,同时还具有非常强的泛化能力,这使得所实现的实时避碰规划器适用于各种复杂的环境;同时,该避碰规划器满足实时性的要求,并且所规划的路径满足UUV运动特性的要求。

    一种基于改进RNN的UUV实时避障规划方法

    公开(公告)号:CN109765929A

    公开(公告)日:2019-05-17

    申请号:CN201910033349.8

    申请日:2019-01-14

    Abstract: 本发明属于无人水下航行领域,具体涉及一种基于改进RNN的UUV实时避障规划方法。本发明提供了一种基于改进RNN的UUV实时避碰规划方法,该方法采用卷积连接方式代替原RNN网络中的全连接,减少了网络参数,降低了算法学习时间,提高了算法信息处理能力。本发明设计的用于UUV实时避碰规划的改进RNN算法,在复杂的不确定环境中有较强的适应性;有较强的学习能力、泛化能力及抗噪声干扰能力。

    一种基于LSTM网络的UUV实时避碰规划方法

    公开(公告)号:CN108319293A

    公开(公告)日:2018-07-24

    申请号:CN201810043820.7

    申请日:2018-01-17

    CPC classification number: G05D1/10 G01S15/93

    Abstract: 本发明公开了一种基于LSTM网络的UUV实时避碰规划方法属于神经网络技术领域和实时避障技术领域。包括步骤:构建全局坐标系和局部坐标系,建立声纳仿真模型;设计用于实时避碰规划的LSTM网络;构建数据集;利用训练集中数据训练LSTM网络,得到基于LSTM网络的实时避碰规划器;将声纳探测信息及目标点信息输入至基于LSTM网络的避碰规划器,获得UUV下一时刻的转艏及速度的调整指令。本发明设计的用于UUV实时避碰规划的LSTM网络,不仅有强大的学习能力,同时还具有非常强的泛化能力,这使得所实现的实时避碰规划器适用于各种复杂的环境;同时,该避碰规划器满足实时性的要求,并且所规划的路径满足UUV运动特性的要求。

    一种基于GRU网络的UUV实时避碰规划方法

    公开(公告)号:CN108334677B

    公开(公告)日:2021-06-11

    申请号:CN201810052628.4

    申请日:2018-01-17

    Abstract: 本发明公开了一种基于GRU网络的UUV实时避碰规划方法,属于水下航行器避障领域。本发明包括:将UUV布放在起始位置;仿真声纳开始获取UUV当前位置的环境信息;将仿真声纳获取的环境信息输入到GRU网络,获得下一时刻UUV转艏及速度的调整指令;UUV执行运动指令,到达下一路径点;判断UUV是否到达目标点,若是则避碰规划器停止工作。本发明利用GRU强大的拟合长时间序列的能力,解决了UUV实时避碰规划的问题,克服了现有的实时避碰规划方法存在环境模型的精度与规划的实时性之间的矛盾,实现了一个简单、高效、易于实现的端到端的实时避碰规划器。

    一种基于CW-RNN网络的UUV实时避碰规划方法

    公开(公告)号:CN108459614A

    公开(公告)日:2018-08-28

    申请号:CN201810044019.4

    申请日:2018-01-17

    CPC classification number: G05D1/10 G06N3/0445

    Abstract: 本发明提供了一种基于CW-RNN网络的UUV实时避碰规划方法,属于水下航行器导航领域。本发明提供的方法如下:步骤1:构建全局坐标系和局部坐标系,建立声纳仿真模型;步骤2:设计用于实时避碰规划的CW-RNN网络;步骤3:构建数据集用于神经网络的训练阶段和测试阶段;步骤4:利用训练集中数据训练CW-RNN网络,得到实时避碰规划器;步骤5:将声纳探测信息及目标点信息输入至基于CW-RNN网络的避碰规划器,获得UUV下一时刻的转艏及速度的调整指令。本发明提供的方法得到的规划器不仅有强大的学习能力,同时还具有非常强的泛化能力,适用于各种复杂的环境;同时可满足实时性的要求,并且所规划的路径满足UUV运动特性的要求。

    一种基于深度Q网络的UUV实时避碰规划方法

    公开(公告)号:CN110716574B

    公开(公告)日:2023-05-02

    申请号:CN201910934428.6

    申请日:2019-09-29

    Abstract: 本发明属于UUV控制技术领域,具体涉及一种基于深度Q网络的UUV实时避碰规划方法。本发明使网络体系在复杂环境的局部避碰规划时具有自我学习的能力实现端到端模型,不对输入的声呐数据进行人工提取特征和特征匹配,直接从原始数据集上学习状态与动作的映射关系,将深度学习和强化学习相结合应用到避碰规划问题的解决上。本发明使用深度强化学习,无需像深度学习那样进行大规模的采样和做标签,也不像传统的方法需建立环境和UUV本身的数学模型,无需环境的模型,采用强化学习不会因为路径过于复杂而无法执行策略,使其在实际应用中缩短了项目的开发周期、实施更加简洁、高效、鲁棒性高。

    一种基于改进RNN的UUV实时避障规划方法

    公开(公告)号:CN109765929B

    公开(公告)日:2022-04-05

    申请号:CN201910033349.8

    申请日:2019-01-14

    Abstract: 本发明属于无人水下航行领域,具体涉及一种基于改进RNN的UUV实时避障规划方法。本发明提供了一种基于改进RNN的UUV实时避碰规划方法,该方法采用卷积连接方式代替原RNN网络中的全连接,减少了网络参数,降低了算法学习时间,提高了算法信息处理能力。本发明设计的用于UUV实时避碰规划的改进RNN算法,在复杂的不确定环境中有较强的适应性;有较强的学习能力、泛化能力及抗噪声干扰能力。

    一种基于LSTM-RNN的UUV动态规划方法

    公开(公告)号:CN108279692B

    公开(公告)日:2020-12-22

    申请号:CN201810043819.4

    申请日:2018-01-17

    Abstract: 本发明公开了一种基于LSTM‑RNN的UUV动态规划方法,属于无人潜航器领域,包括如下步骤:步骤(1):选择几何模型构建障碍环境模型;步骤(2):利用蚁群算法建立用于获取数据集的UUV动态规划器;步骤(3):设计用于动态规划的LSTM‑RNN网络模型;步骤(4):获取数据集:步骤(5):利用数据集中训练集的数据训练LSTM‑RNN网络,得到基于LSTM‑RNN网络的动态规划器;步骤(6):将声纳探测信息及目标点信息输入至基于LSTM‑RNN网络的运动规划器,获得UUV下一时刻的航向及航速。本方法具有强大的学习能力,同时还具有非常强的泛化能力,这使得所实现的动态规划器适用于复杂的环境。同时满足实时性的要求,并且所规划的路径符合UUV的运动特性。

    一种基于CW-RNN网络的UUV实时避碰规划方法

    公开(公告)号:CN108459614B

    公开(公告)日:2020-12-04

    申请号:CN201810044019.4

    申请日:2018-01-17

    Abstract: 本发明提供了一种基于CW‑RNN网络的UUV实时避碰规划方法,属于水下航行器导航领域。本发明提供的方法如下:步骤1:构建全局坐标系和局部坐标系,建立声纳仿真模型;步骤2:设计用于实时避碰规划的CW‑RNN网络;步骤3:构建数据集用于神经网络的训练阶段和测试阶段;步骤4:利用训练集中数据训练CW‑RNN网络,得到实时避碰规划器;步骤5:将声纳探测信息及目标点信息输入至基于CW‑RNN网络的避碰规划器,获得UUV下一时刻的转艏及速度的调整指令。本发明提供的方法得到的规划器不仅有强大的学习能力,同时还具有非常强的泛化能力,适用于各种复杂的环境;同时可满足实时性的要求,并且所规划的路径满足UUV运动特性的要求。

Patent Agency Ranking