-
公开(公告)号:CN110968836A
公开(公告)日:2020-04-07
申请号:CN201911124985.8
申请日:2019-11-18
Applicant: 哈尔滨工程大学
Abstract: 本发明属于UUV自主控制技术领域,具体涉及一种基于威胁的UUV应急决策方法。本发明有效解决UUV在水下环境遭遇威胁时能进行应急决策的问题,准确评估威胁事件,通过灵敏度分析得到威胁事件的威胁程度排序。在海洋环境威胁类、平台威胁类、任务威胁类三方面,便于了解当前UUV系统各部分的状况,利用动态影响图模型推理得到应急决策的最大期望效用值,确定最终应急决策方案。
-
公开(公告)号:CN110781924A
公开(公告)日:2020-02-11
申请号:CN201910932848.0
申请日:2019-09-29
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于全卷积神经网络的侧扫声纳图像特征提取方法,利用原有的声纳图像进行数据增广,获得模型训练和测试所需的样本集;对样本集中的每幅图像的海底地形的边缘区域进行人工标注,区分目标和背景,获得模型训练和测试标签图;构建FCNs模型;将海底地形图像及对应的标签图输入网络,采用带动量项的小批量梯度下降法训练网络,保存最优网络模型;对比随机梯度下降法与小批量梯度下降法下网络的收敛性、稳定性;对地形边缘轮廓特征提取并输出特征提取结果,对结果进行定性评价。本发明方法无需复杂的预处理,声纳特征特征提取方法速度快、效率高,具有较强的抗散斑噪声的能力;提高了网络的性能,确保了FCNs各个网络模型的收敛性和稳定性。
-
公开(公告)号:CN109765929A
公开(公告)日:2019-05-17
申请号:CN201910033349.8
申请日:2019-01-14
Applicant: 哈尔滨工程大学
Abstract: 本发明属于无人水下航行领域,具体涉及一种基于改进RNN的UUV实时避障规划方法。本发明提供了一种基于改进RNN的UUV实时避碰规划方法,该方法采用卷积连接方式代替原RNN网络中的全连接,减少了网络参数,降低了算法学习时间,提高了算法信息处理能力。本发明设计的用于UUV实时避碰规划的改进RNN算法,在复杂的不确定环境中有较强的适应性;有较强的学习能力、泛化能力及抗噪声干扰能力。
-
公开(公告)号:CN110632931B
公开(公告)日:2022-06-21
申请号:CN201910953396.4
申请日:2019-10-09
Applicant: 哈尔滨工程大学
Abstract: 本发明公开一种动态环境下基于深度强化学习的移动机器人避碰规划方法,属于移动机器人导航技术领域。本发明通过激光测距仪采集原始数据,将原始数据处理后作为神经网络的输入,建立LSTM神经网络,通过A3C算法,神经网络输出相应参数,经过处理获得机器人每一步的动作。本发明无需对环境进行建模,更加适用于未知障碍物环境,采用actor‑critic框架与时间差分算法,实现低方差的同时更适用于连续动作空间,实现边训练边学习的效果。设计具有艏向转角限制的连续动作空间,且采用4个线程并行学习训练,与一般深度强化学习方法相比,大大提高学习训练时间,减少样本相关性,保障探索空间的高利用性与探索策略的多样性,从而提升算法收敛性、稳定性以及避障成功率。
-
公开(公告)号:CN111931368A
公开(公告)日:2020-11-13
申请号:CN202010766650.2
申请日:2020-08-03
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于GRU粒子滤波的UUV目标状态估计方法,首先建立基于门循环单元(Gated Recurrent Units,GRU)的深度神经网络来拟合前一时刻目标测量状态与当前时刻目标实际状态之间的映射;该神经网络学习目标的动力学模型并识别测量噪声。该滤波器从测量状态中直接采样,以这些采样粒子来近似测量分布。然后,充分训练的神经网络用来预测各粒子的当前状态,从而根据蒙特卡洛思想估计出目标当前的状态。可解决UUV目标状态估计中,由目标复杂的动力学以及声呐测量的不确定性引起的,目标状态估计精度低以及估计不稳定的问题。
-
公开(公告)号:CN111913175A
公开(公告)日:2020-11-10
申请号:CN202010631966.0
申请日:2020-07-02
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种传感器短暂失效下带补偿机制的水面目标跟踪方法,包括:采集目标观测信息,将采集数据进行处理并分为训练集和测试集;设计具有时序预测能力LSTM神经网络结构;离线训练LSTM神经网络;采用LSTM神经网络对传感器短时失效下观测量进行在线补偿,对在线补偿后的观测量采用UKF方法得到目标位置和速度信息滤波值。本发明LSTM神经网络能够处理含有噪声数据,对非线性数据有较好学习效果;采取离线训练和在线补偿方式降低训练神经网络内部参数导致的目标跟踪实时性不强;在传感器量测缺失下对观测值进行补偿,降低估计误差;在传感器量测出现缺失和目标发生机动时,降低传统方法中只取信运动模型而造成估计误差。
-
公开(公告)号:CN110632931A
公开(公告)日:2019-12-31
申请号:CN201910953396.4
申请日:2019-10-09
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明公开一种动态环境下基于深度强化学习的移动机器人避碰规划方法,属于移动机器人导航技术领域。本发明通过激光测距仪采集原始数据,将原始数据处理后作为神经网络的输入,建立LSTM神经网络,通过A3C算法,神经网络输出相应参数,经过处理获得机器人每一步的动作。本发明无需对环境进行建模,更加适用于未知障碍物环境,采用actor-critic框架与时间差分算法,实现低方差的同时更适用于连续动作空间,实现边训练边学习的效果。设计具有艏向转角限制的连续动作空间,且采用4个线程并行学习训练,与一般深度强化学习方法相比,大大提高学习训练时间,减少样本相关性,保障探索空间的高利用性与探索策略的多样性,从而提升算法收敛性、稳定性以及避障成功率。
-
公开(公告)号:CN110781924B
公开(公告)日:2023-02-14
申请号:CN201910932848.0
申请日:2019-09-29
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于全卷积神经网络的侧扫声纳图像特征提取方法,利用原有的声纳图像进行数据增广,获得模型训练和测试所需的样本集;对样本集中的每幅图像的海底地形的边缘区域进行人工标注,区分目标和背景,获得模型训练和测试标签图;构建FCNs模型;将海底地形图像及对应的标签图输入网络,采用带动量项的小批量梯度下降法训练网络,保存最优网络模型;对比随机梯度下降法与小批量梯度下降法下网络的收敛性、稳定性;对地形边缘轮廓特征提取并输出特征提取结果,对结果进行定性评价。本发明方法无需复杂的预处理,声纳特征特征提取方法速度快、效率高,具有较强的抗散斑噪声的能力;提高了网络的性能,确保了FCNs各个网络模型的收敛性和稳定性。
-
公开(公告)号:CN109765929B
公开(公告)日:2022-04-05
申请号:CN201910033349.8
申请日:2019-01-14
Applicant: 哈尔滨工程大学
Abstract: 本发明属于无人水下航行领域,具体涉及一种基于改进RNN的UUV实时避障规划方法。本发明提供了一种基于改进RNN的UUV实时避碰规划方法,该方法采用卷积连接方式代替原RNN网络中的全连接,减少了网络参数,降低了算法学习时间,提高了算法信息处理能力。本发明设计的用于UUV实时避碰规划的改进RNN算法,在复杂的不确定环境中有较强的适应性;有较强的学习能力、泛化能力及抗噪声干扰能力。
-
公开(公告)号:CN111445498A
公开(公告)日:2020-07-24
申请号:CN202010196608.1
申请日:2020-03-19
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种采用Bi-LSTM神经网络的目标跟踪方法,目的是解决强机动目标运动过程复杂、运动模型难以建立且计算量大的问题,提高目标跟踪精度。技术方案是先建立目标跟踪系统,采集运动目标位置、速度数据,并进行数据预处理,获得目标运动训练集和测试集;然后设计适用于目标跟踪的Bi-LSTM神经网络,用训练集训练神经网络中的权重参数;最后用训练好的模型实现目标跟踪。本发明适用于处理时间序列上的连续数据,通过历史数据预测下一时刻目标运动状态,目标跟踪的精度较高。
-
-
-
-
-
-
-
-
-