-
公开(公告)号:CN114163247A
公开(公告)日:2022-03-11
申请号:CN202111492717.9
申请日:2021-12-08
Applicant: 哈尔滨工程大学
IPC: C04B35/626 , C04B35/48
Abstract: 含有闭‑通孔结构的用于多元改性相负载的陶瓷基粉末的制备方法,本发明的目的为了解决陶粉末无法作为负载载体以及无法调节涂层孔隙率的问题。制备方法:一、配置分散剂水溶液;二、向分散剂水溶液加入陶瓷粉末,制备一体化浆料;三、将粘结剂加入到一体化浆料中;四、将发泡剂以及催发活性相依次加入粘稠的一体化浆料中,持续进行磁力搅拌使气泡变成微气泡,得到发泡一体化浆料;五、发泡一体化浆料装入浆料罐中,浆料罐外加超声场,然后对发泡一体化浆料进行喷雾造粒,干燥得到含有闭‑通孔结构的陶瓷基粉末。本发明利用发泡‑喷雾造粒法,制备含有均匀三维孔洞,气孔率较高,孔隙分布均匀,且表面粗糙的具有通‑闭孔结构的陶瓷粉末。
-
公开(公告)号:CN110918978A
公开(公告)日:2020-03-27
申请号:CN201911295162.1
申请日:2019-12-16
Applicant: 哈尔滨工程大学
Abstract: 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用,本发明属于复合材料领域,它要解决现有纳米粒子混粉的方式容易发生团聚,使其形核效应降低的问题。本发明所述的具有功能层的增强相强化复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层的石墨烯材料作为掺杂相组成。所述的具有功能层的增强相的制备方法:将非金属纳米粒子加入到含有镍盐的混合溶液中,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中进行反应。本发明在合金粉中通过增强相的介质作用引入纳米颗粒,非金属纳米颗粒与合金粉具有较好的相容性,能均匀分散在合金粉中。
-
公开(公告)号:CN115876628A
公开(公告)日:2023-03-31
申请号:CN202211542829.5
申请日:2022-12-02
Applicant: 哈尔滨工程大学
Abstract: 模拟极地环境动力端叶片过冷及多相流冲蚀综合测试系统,本发明要解决动力端叶片缺乏极地环境条件下服役状态模拟试验设备的问题。本发明综合测试系统包括叶片运转模拟单元、低温环境模拟单元和介质填充装置,叶片运转模拟单元中在主轴上设置有多个转子,动力端叶片沿圆周方向安装在转子上,内螺旋管道伸入防泄罩内并对向动力端叶片,介质填充装置包括多个填充舱室,补压通道与各填充舱室相连通,低温环境模拟单元包括介质预冷装置、稳压罐、增压机、低温冷气管道和极冷装置。本发明通过低温环境模拟单元及复合冲蚀单元实现极地环境模拟,结合叶片运转模拟单元及除尘装置等可实现模拟极地环境下的动力端叶片多相流冲蚀性能测试。
-
公开(公告)号:CN115466918B
公开(公告)日:2024-04-16
申请号:CN202211085749.1
申请日:2022-09-06
Applicant: 哈尔滨工程大学
IPC: C23C4/02 , C23C4/04 , C23C4/134 , C04B35/626 , C04B35/628
Abstract: 晶须/纤维表面织构化纳米凸点结构改性方法及其强韧化应用,本发明是为了解决现有化学表面改性晶须/纤维的修饰方法中试剂具有污染性,工艺复杂成本高的问题。改性方法:一、将晶须或者纤维和纳米颗粒加入到分散剂中,形成晶须/纤维‑纳米颗粒混合前驱体溶液;二、将晶须/纤维‑纳米颗粒混合前驱体溶液涂覆在预热的陶瓷基板上;三、通过激光束对前驱体涂层进行高能量密度的辐照,四、对改性的晶须/纤维用去离子水进行反复清洗。本发明该改性的晶须/纤维作为增韧补强相添加到热防护涂层或复合材料中。本发明利用高能激光技术在晶须/纤维表面原位生长织构化纳米凸点结构,不使用化学修饰试剂,工艺简单,并实现晶须对基体材料的强韧化提升。
-
公开(公告)号:CN114965128A
公开(公告)日:2022-08-30
申请号:CN202210517899.9
申请日:2022-05-18
Applicant: 哈尔滨工程大学
IPC: G01N3/56
Abstract: 模拟极地深冷环境下多介质冲刷损伤的加速试验装置,本发明的目的是为了模拟极地地区海上装备及船舶等机械设备在复杂环境作用。本发明加速试验装置中的加速装置由藕状多通道管道、增压室、混料管道和加速喷嘴组成竖直圆筒形,混料管道内形成S形折流通道,加速喷嘴由上至下由收缩段、喉部平直段、发散段和近平直段组成,加速喷嘴的喷出口与环境模拟舱连通,空压机通过第一介质输送管路与储气罐连接,储气罐的出气口通过第二介质输送管路与藕状多通道管道相连通,制冰机中的固体冰碴介质以及盐雾经过管路输送至藕状多通道管道中。本发明所述的多介质冲刷损伤的加速试验装置能对多相环境进行模拟耦合,并实现冲蚀‑腐蚀联合作用的加速试验。
-
公开(公告)号:CN112284953B
公开(公告)日:2022-07-12
申请号:CN202011147904.9
申请日:2020-10-23
Applicant: 哈尔滨工程大学
Abstract: 海洋变温模拟环境下多元介质腐蚀‑冲蚀耦合试验装置,本发明腐蚀‑冲蚀耦合试验装置包括多元气氛发生及耦合系统、固体颗粒物混合系统、冲蚀颗粒及盐雾气氛耦合装置和腐蚀‑冲蚀反应系统,多个盐类气氛发生器、微生物气氛发生器和污染气氛发生器通过气管与多元气氛混合装置相连通,海洋环境固体颗粒发生器、选定粒径固体颗粒发生器、海洋黏着类固体颗粒发生器通过管路与搅拌混合加热装置相连通,搅拌混合加热装置与冲蚀颗粒及盐雾气氛耦合装置相连,冲蚀颗粒及盐雾气氛耦合装置通过冲蚀输出管道与腐蚀‑冲蚀反应系统相连。本发明能够满足现有实验室环境下海洋大气多元介质腐蚀气氛与冲蚀硬质颗粒多介质变温环境的复合检测试验。
-
公开(公告)号:CN110918978B
公开(公告)日:2022-04-19
申请号:CN201911295162.1
申请日:2019-12-16
Applicant: 哈尔滨工程大学
Abstract: 用于熔凝技术具有功能层的增强相强化的复合粉末及其制备方法和应用,本发明属于复合材料领域,它要解决现有纳米粒子混粉的方式容易发生团聚,使其形核效应降低的问题。本发明所述的具有功能层的增强相强化复合粉末是由96wt.%~98wt.%金属基粉末为基体粉,4wt.%~2wt.%具有功能层的石墨烯材料作为掺杂相组成。所述的具有功能层的增强相的制备方法:将非金属纳米粒子加入到含有镍盐的混合溶液中,得到反应溶液,将氯化钯处理后的增强相加入到反应溶液中进行反应。本发明在合金粉中通过增强相的介质作用引入纳米颗粒,非金属纳米颗粒与合金粉具有较好的相容性,能均匀分散在合金粉中。
-
公开(公告)号:CN110551963B
公开(公告)日:2021-06-01
申请号:CN201910828054.X
申请日:2019-09-03
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种用于热障涂层孔隙率调控与强度补充的材料及方法,包括:采用抑制孔隙形成的抑孔改性相与陶瓷基质粉共混处理,制备热障涂层喷涂用抑孔粉;采用促进孔隙形成的增韧造孔改性相与陶瓷基质粉共混处理,制备热障涂层喷涂用增韧造孔粉。运用机械混合、悬浮吸、悬浮分散、喷雾造粒手段制备抑孔粉与增韧造孔粉;将抑孔粉装入同步送粉器的第一送粉筒中,将增韧造孔粉装入同步送粉器的第二送粉筒中;通过精确调控抑孔粉与增韧造孔粉的配比,在粘结层表面制备孔隙率可控的等离子喷涂陶瓷功能层。本发明充分利用抑孔改性相与增韧造孔改性相对热障涂层孔隙率调控的特性,达到充分发挥热障涂层孔隙隔热性能,并避免涂层力学结构稳定性降低的目的。
-
公开(公告)号:CN112284953A
公开(公告)日:2021-01-29
申请号:CN202011147904.9
申请日:2020-10-23
Applicant: 哈尔滨工程大学
Abstract: 海洋变温模拟环境下多元介质腐蚀‑冲蚀耦合试验装置,本发明腐蚀‑冲蚀耦合试验装置包括多元气氛发生及耦合系统、固体颗粒物混合系统、冲蚀颗粒及盐雾气氛耦合装置和腐蚀‑冲蚀反应系统,多个盐类气氛发生器、微生物气氛发生器和污染气氛发生器通过气管与多元气氛混合装置相连通,海洋环境固体颗粒发生器、选定粒径固体颗粒发生器、海洋黏着类固体颗粒发生器通过管路与搅拌混合加热装置相连通,搅拌混合加热装置与冲蚀颗粒及盐雾气氛耦合装置相连,冲蚀颗粒及盐雾气氛耦合装置通过冲蚀输出管道与腐蚀‑冲蚀反应系统相连。本发明能够满足现有实验室环境下海洋大气多元介质腐蚀气氛与冲蚀硬质颗粒多介质变温环境的复合检测试验。
-
公开(公告)号:CN110551963A
公开(公告)日:2019-12-10
申请号:CN201910828054.X
申请日:2019-09-03
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种用于热障涂层孔隙率调控与强度补充的材料及方法,包括:采用抑制孔隙形成的抑孔改性相与陶瓷基质粉共混处理,制备热障涂层喷涂用抑孔粉;采用促进孔隙形成的增韧造孔改性相与陶瓷基质粉共混处理,制备热障涂层喷涂用增韧造孔粉。运用机械混合、悬浮吸、悬浮分散、喷雾造粒手段制备抑孔粉与增韧造孔粉;将抑孔粉装入同步送粉器的第一送粉筒中,将增韧造孔粉装入同步送粉器的第二送粉筒中;通过精确调控抑孔粉与增韧造孔粉的配比,在粘结层表面制备孔隙率可控的等离子喷涂陶瓷功能层。本发明充分利用抑孔改性相与增韧造孔改性相对热障涂层孔隙率调控的特性,达到充分发挥热障涂层孔隙隔热性能,并避免涂层力学结构稳定性降低的目的。
-
-
-
-
-
-
-
-
-