-
公开(公告)号:CN109141421A
公开(公告)日:2019-01-04
申请号:CN201810771536.1
申请日:2018-07-13
Applicant: 哈尔滨工程大学
IPC: G01C21/20
CPC classification number: G01C21/20
Abstract: 本发明提供的是一种欠驱动AUV水下动态目标跟踪中的期望路径构造方法。首先根据交互多模型方法得到当前时刻目标位置的估计值,通过超短基线与双目视觉定位系统得到当前时刻目标位置的观测值,然后通过卡尔曼滤波得到当前时刻目标位置的最优估计值;选择AUV位置、所选历史目标点序列、当前时刻目标的最优估计值作为期望目标点序列;引入几何约束条件,根据期望目标点序列构造三次样条曲线,选择该样条曲线作为AUV跟踪的期望路径曲线。该方法可以实时更新期望路径曲线,提高AUV应对目标不确定性以及瞬时干扰的影响,提高跟踪快速性和精度。
-
公开(公告)号:CN107065537A
公开(公告)日:2017-08-18
申请号:CN201710094824.3
申请日:2017-02-22
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种AUV横推低速无输出情况下的运动控制方法。首先是螺旋桨敞水试验获得推进器推力曲线,从而确定推进器有输出情况下的转速区间。然后是模糊控制器根据艏向偏差及艏向偏差变化率求得所需转速,所需转速包含在敞水实验所得转速区间内。最后是将艏向偏差和偏差变化率输入PID控制器,求得推进器以稳定转速工作的时间间隔。推进器在给定的时间间隔内以确定转速工作,驱动AUV到达目标艏向。与传统的考虑推进器非线性约束的控制方法相比,该方法方便高效,无需对推进器的非线性约束进行准确建模或近似估计,直接从准确的转速推力关系出发,建立确定推进器转速及工作时间的阶跃输出控制器,提高了响应速度。
-
公开(公告)号:CN106919048A
公开(公告)日:2017-07-04
申请号:CN201710094816.9
申请日:2017-02-22
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提供的是一种AUV推进器状态检测和推力曲线修正方法。首先是螺旋桨敞水试验获得推进器相关曲线,包括控制信号推力曲线、转速推力曲线、电流推力曲线、转速电流曲线,以此为标准进行推进器状态检测及推力曲线修正。其次是推进器状态检测,实际工作时利用电流传感器和转速传感器实测电流和实测转速,以及测试环境下转速与电流关系进行推进器状态检测。最后是推进器推力曲线修正,当达到推进器推力曲线修正条件时,进行局部修正和全局修正判断,替换掉原控制信号下的推力值,拟合获得推力曲线。本发明可实现对推进器状态的实时检测,并能实现推进器推力曲线的快速修正。
-
公开(公告)号:CN108469731B
公开(公告)日:2020-12-22
申请号:CN201810165859.6
申请日:2018-02-28
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明公开了一种波浪滑翔器故障监测与鲁棒控制方法,属于波浪滑翔器控制领域,包含如下步骤:波浪滑翔器主控计算机在每个控制节拍读取一次各设备发送来的数据,并存储;主控计算机对n个控制节拍的数据进行分析,判别是否发生故障;主控计算机进行综合分析,判断波浪滑翔器系缆是否发生断裂;主控计算机针对波浪滑翔器的故障情况,根据鲁棒控制方法,对波浪滑翔器进行运动控制;利用无线电模块,将波浪滑翔器运行状态信息按通信协议反馈至母船,进入下一设备故障检测周期。本发明能够对波浪滑翔器所搭载的传感器等设备的工作状态进行故障检测,并能判断波浪滑翔器系缆是否发生断裂,利用鲁棒控制方法,提升了波浪滑翔器在设备故障时的生存能力。
-
公开(公告)号:CN107065537B
公开(公告)日:2019-11-12
申请号:CN201710094824.3
申请日:2017-02-22
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种AUV横推低速无输出情况下的运动控制方法。首先是螺旋桨敞水试验获得推进器推力曲线,从而确定推进器有输出情况下的转速区间。然后是模糊控制器根据艏向偏差及艏向偏差变化率求得所需转速,所需转速包含在敞水实验所得转速区间内。最后是将艏向偏差和偏差变化率输入PID控制器,求得推进器以稳定转速工作的时间间隔。推进器在给定的时间间隔内以确定转速工作,驱动AUV到达目标艏向。与传统的考虑推进器非线性约束的控制方法相比,该方法方便高效,无需对推进器的非线性约束进行准确建模或近似估计,直接从准确的转速推力关系出发,建立确定推进器转速及工作时间的阶跃输出控制器,提高了响应速度。
-
公开(公告)号:CN106919048B
公开(公告)日:2019-09-27
申请号:CN201710094816.9
申请日:2017-02-22
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提供的是一种AUV推进器状态检测和推力曲线修正方法。首先是螺旋桨敞水试验获得推进器相关曲线,包括控制信号推力曲线、转速推力曲线、电流推力曲线、转速电流曲线,以此为标准进行推进器状态检测及推力曲线修正。其次是推进器状态检测,实际工作时利用电流传感器和转速传感器实测电流和实测转速,以及测试环境下转速与电流关系进行推进器状态检测。最后是推进器推力曲线修正,当达到推进器推力曲线修正条件时,进行局部修正和全局修正判断,替换掉原控制信号下的推力值,拟合获得推力曲线。本发明可实现对推进器状态的实时检测,并能实现推进器推力曲线的快速修正。
-
公开(公告)号:CN108469731A
公开(公告)日:2018-08-31
申请号:CN201810165859.6
申请日:2018-02-28
Applicant: 哈尔滨工程大学
IPC: G05B13/04
CPC classification number: G05B13/042
Abstract: 本发明公开了一种波浪滑翔器故障监测与鲁棒控制方法,属于波浪滑翔器控制领域,包含如下步骤:波浪滑翔器主控计算机在每个控制节拍读取一次各设备发送来的数据,并存储;主控计算机对n个控制节拍的数据进行分析,判别是否发生故障;主控计算机进行综合分析,判断波浪滑翔器系缆是否发生断裂;主控计算机针对波浪滑翔器的故障情况,根据鲁棒控制方法,对波浪滑翔器进行运动控制;利用无线电模块,将波浪滑翔器运行状态信息按通信协议反馈至母船,进入下一设备故障检测周期。本发明能够对波浪滑翔器所搭载的传感器等设备的工作状态进行故障检测,并能判断波浪滑翔器系缆是否发生断裂,利用鲁棒控制方法,提升了波浪滑翔器在设备故障时的生存能力。
-
公开(公告)号:CN109213180B
公开(公告)日:2021-07-13
申请号:CN201810776783.0
申请日:2018-07-13
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明提供的是一种立扁体AUV下潜过程中的安全抛载及深度控制方法。首先,水面释放的AUV将依靠自身重力下潜,当距底高度为60米时,若此时下潜速度超过2m/s,则立即抛载;否则继续下潜,应抛载高度由操纵性仿真给出,AUV到达应抛载高度后立即抛载。抛载完成后AUV将悬浮于某一高度,若悬浮高度不等于工作高度,则开启垂向推进器,通过Bang‑Bang控制迅速将AUV定位到工作高度,当AUV到达工作高度后,控制器切换为S面控制,使AUV动力定位在工作高度,开始作业。该方法通过大量操纵性仿真数据获得安全抛载高度,提高了抛载的安全性以及准确性,节省了下潜时间,提高了作业效率。
-
公开(公告)号:CN109000838A
公开(公告)日:2018-12-14
申请号:CN201810515162.7
申请日:2018-05-25
Applicant: 哈尔滨工程大学
IPC: G01L5/00
Abstract: 本发明提供的是一种适用于全海深AUV的浮力测量方法。通过挂载不同质量的下潜抛载P1和P2来得到两个不同的受力方程构成二元一次方程组,对其求解得到全海深AUV无动力下潜的时受力表达式中,粘滞阻力系数D(v)和AUV载体本身的浮力BAUV这两个未知量,以达到测定全海深AUV在某个深度剖面处的浮力的目的。本发明不仅适用于全海深AUV无动力下潜过程中的浮力测定,还可以适用于深海AUV无纵倾的下潜过程。
-
公开(公告)号:CN108170976B
公开(公告)日:2021-06-01
申请号:CN201810026410.1
申请日:2018-01-11
Applicant: 哈尔滨工程大学
IPC: G06F30/15
Abstract: 本发明提供一种水下潜艇动态回收AUV过程中的安全性分析方法,首先将潜艇回收AUV的过程分为返航段、平面调整段和入坞段,通过AUV、潜艇和坞站所搭载的传感器获取对接过程中AUV当前时刻的状态信息,选取相应的安全性评价指标与阈值数据库进行对比,根据安全判定决定AUV继续对接还是执行相应的安全性措施。本发明充分考虑水下回收中存在的海流干扰、几何约束、信号延迟、无直接通信、欠驱动等问题,选择实用、有效的安全评价指标,制定安全评估方案及安全性措施,在保证回收成功率的前提下有效的分析安全性问题,避免发生危险。
-
-
-
-
-
-
-
-
-