一种基于超图信号分解的联邦跨域推荐方法

    公开(公告)号:CN118277669A

    公开(公告)日:2024-07-02

    申请号:CN202410462841.8

    申请日:2024-04-17

    Abstract: 本发明公开了一种基于超图信号分解的联邦跨域推荐方法,属于数据挖掘技术领域。解决了现有技术中传统的跨域推荐方法的难以避免全局模型混入领域特有信息的问题;本发明设定总通信轮次,使用本地数据初始化训练客户端模型,服务器随机选取客户端训练;客户端使用本地的低通超图滤波器和高通超图滤波器分别得到领域特定和领域共享的用户表征和物品表征;客户端和服务器之间运行本地‑全局知识迁移算法;服务器对得到的领域共享的用户表征和更新后的低通超图滤波器的模型进行聚合;服务器将聚合后的全局用户表征和聚合后的低通超图滤波器的模型发送给客户,重复上述步骤直至执行完总通信轮次。本发明避免了出现负迁移问题,可以应用于联邦跨域推荐。

    一种基于图神经网络进行用户行为预测的方法及装置

    公开(公告)号:CN115545300B

    公开(公告)日:2023-07-11

    申请号:CN202211205618.2

    申请日:2022-09-30

    Abstract: 本申请涉及一种基于图神经网络进行用户行为预测的方法及装置,其方法包括标注用户、商品及两者之间的交互行为;进行构图;初始化动态实体嵌入和动态关系嵌入,设置模型的训练时间步;若当前的训练时间步小于设置的训练时间步,则获取当前的时序知识图谱的静态关系嵌入,使用循环神经网络更新动态关系嵌入;使用图神经网络计算当前的时序知识图谱的静态实体嵌入,并使用循环神经网络更新动态实体嵌入,直至训练时间步等于或大于设置值;使用卷积解码器进行解码,得到所有实体的得分,并根据得分进行评估,保存评估结果满足预设条件的时序知识图谱推理的模型;基于模型进行预测。本申请具有使图结构信息聚合更准确,提高预测精度的效果。

Patent Agency Ranking