-
公开(公告)号:CN118536603A
公开(公告)日:2024-08-23
申请号:CN202410754029.2
申请日:2024-06-12
IPC分类号: G06N5/04 , G06N3/0455 , G06N3/0464 , G06F18/22 , G06F18/25
摘要: 本发明涉及生成式人工智能技术领域,公开了一种基于因果微调的个性化文生图模型构建及文生图方法,包括:将多个主体的多个参考图像、文本描述分别进行合并增强得到多个合并增强图像及合并文本描述;利用预设因果解耦算法,从各主体的文本描述、合并文本描述及合并增强图像中分别提取出保护身份的文本表征、身份相关及身份无关的视觉表征;将其输入预设因果推理模型,得到交叉注意力映射图;将交叉注意力映射图与对应主体身份相关的视觉表征对齐。本发明通过主体感知的因果解耦来鉴别主体身份相关的信息和身份无关的信息,保护主体身份信息,通过交叉注意力引导使每个主体的文本属性与视觉属性因果对齐,避免主体间混淆文生图的有效性、可控性。
-
公开(公告)号:CN118313445A
公开(公告)日:2024-07-09
申请号:CN202410529143.5
申请日:2024-04-29
IPC分类号: G06N3/098 , G06N3/096 , G06N3/084 , G06N3/0464 , G06N3/0499 , G06F18/2415 , G06F18/2431 , G06N3/048
摘要: 本发明涉及联邦学习技术领域,公开了一种基于受约束梯度更新的联邦类增量学习方法及系统,该方法包括:接收服务器发送的上一任务的个性化全局模型和跨任务协作损失;当获取到新的任务数据时,基于上一任务的梯度空间的基向量、新的任务的预测标签和真实标签以及跨任务协作损失,对上一任务的模型参数沿着与其梯度空间正交的方向进行更新,得到新的任务在本轮训练中的模型参数;对新的任务的类原型进行加权平均,得到新的任务在本轮训练中的类平均原型;重复上述模型参数和类平均原型的更新,进行预设轮次训练,在每一轮训练完成后,向服务器发送新的任务的模型参数和类平均原型。本发明在客户端有新增任务时,避免灾难性遗忘和模型漂移问题。
-
公开(公告)号:CN118101357B
公开(公告)日:2024-08-06
申请号:CN202410525137.2
申请日:2024-04-29
IPC分类号: H04L9/40 , H04L69/06 , H04L69/22 , H04L47/2441 , G06N3/042 , G06N3/0442 , G06N3/08
摘要: 本发明提供了一种结合数据包语义的网络流量分类方法,将数据包输入到网络流量处理工具,分别处理网络流量数据包的数据包头和有效载荷,分别得到二者的特征向量;将数据包头的特征向量与有效载荷的特征向量进行融合,得到整个数据包的特征向量;将特征向量中具有相同五元组的网络流量数据包归于同一通信过程,由同一通信过程中的网络流量数据包构成图,并进行分类。本发明根据不同传输层协议的特点,采用不同的方法来构图,充分表示不同的通信过程,以此利用数据包之间的上下文信息,弥补了现有方法没有利用上下文信息的缺陷。
-
公开(公告)号:CN117955745A
公开(公告)日:2024-04-30
申请号:CN202410347079.9
申请日:2024-03-26
IPC分类号: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
摘要: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN117932233A
公开(公告)日:2024-04-26
申请号:CN202410324849.8
申请日:2024-03-21
IPC分类号: G06F18/10 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/23
摘要: 本发明提供了一种基于相似异常行为的用户行为模型微调方法、系统及介质,该方法包括:对每个用户的行为数据预处理及统计特征提取;按正常行为统计特征,对所有用户进行聚类;对每个正常用户使用其自身的部分行为数据训练单独的用户级行为模型,所述正常用户为未出现过异常行为的用户;以同聚类的异常用户数据对每个正常用户训练单独的用户级行为模型进行微调,所述异常用户为存在异常行为的用户;对微调后的用户级行为模型进行测试。本发明能让企业以少数异常行为数据辅助对正常用户未来可能出现的异常行为的检测,有利于企业对内部威胁进行预警。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
IPC分类号: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
摘要: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN118118274B
公开(公告)日:2024-10-18
申请号:CN202410445603.6
申请日:2024-04-15
IPC分类号: H04L9/40
摘要: 本发明提供了一种基于图异常检测算法的网络入侵检测方法、系统及介质,该方法包括:针对不同的协议将网络流量数据包按照五元组聚合为网络流,所述五元组包括源IP地址、源端口号、目的IP地址、目的端口号和传输层协议;使用聚合好的网络流构建同源网络流图和同目的网络流图,并采用相似度计算减小同源网络流图和同目的网络流图的规模;使用图自编码器对同源网络流图和同目的网络流图进行编码解码,最终得到每个网络流的异常分,进而根据每个网络流的异常分判断是否为异常恶意流量。本发明能对网络流之间的关系进行充分建模。
-
公开(公告)号:CN117792803A
公开(公告)日:2024-03-29
申请号:CN202410218653.0
申请日:2024-02-28
IPC分类号: H04L9/40 , G06F18/2415 , G06F18/2433 , G06F18/214 , G06F16/35 , G06F40/284 , G06N3/0455 , G06N3/088 , G06N3/09
摘要: 本发明提供了一种基于数据包有效载荷预训练模型的网络攻击检测方法、系统及介质,该方法包括:对数据集中的网络流量包进行切分,获得网络会话流粒度的网络数据包有效载荷序列;对数据集的正常流量和网络攻击流量进行均衡采样,使用滑动窗口对有效载荷进行切分;将有效载荷切分后获得的字节对序列经分词器处理后输入Bert模型进行预训练,在预训练Bert模型时将网络会话流类比于文档,将网络数据包有效载荷类比于句子:加载已预训练的Bert模型,结合分类器在新的数据上进行微调,采用微调后的网络攻击检测模型检测网络攻击。本发明能更好地捕获网络数据包有效载荷的信息,以便于通过网络数据包有效载荷预训练模型检测网络攻击。
-
公开(公告)号:CN117095243A
公开(公告)日:2023-11-21
申请号:CN202311345466.0
申请日:2023-10-18
IPC分类号: G06V10/764 , H04L9/40 , G06V10/774 , G06V10/80 , G06V10/82 , G06V10/70 , G06V10/74 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/24 , G06F18/25 , G06F18/20 , G06N3/045 , G06N3/0895 , G06N3/096 , G06N3/084 , G06N3/0985 , G06F123/02
摘要: 本发明提供一种基于分支融合策略的小样本类增量网络入侵检测方法,包括:步骤一:将采集到的网络流量样本进行拆分处理,处理后的网络流量样本被转化为灰度图像表示;步骤二:将网络流量样本的灰度图像输入到骨干网络ViT中用于自监督模式的预训练以提高特征嵌入的表示能力;步骤三:初始化基础会话分支分类器的投影层参数,用于训练初始的检测分类模型;步骤四:学习每个新会话分支分类器模块,进而使用分支融合策略关联基础会话和新会话分支分类器从而帮助分类器模型完成训练和推理。本发明的有益效果是:本发明方法在不会遗忘已学习攻击类别的情况下,允许以增量、小样本、灵活的方式持续学习新攻击类别,实现保护目标网络系统免受恶意攻击。
-
公开(公告)号:CN116318929B
公开(公告)日:2023-08-29
申请号:CN202310206593.6
申请日:2023-03-07
IPC分类号: H04L9/40 , H04L41/0631 , H04L41/16
摘要: 本发明涉及网络安全技术领域,特别涉及一种基于安全告警数据的攻击策略抽取方法。其方法包括以下步骤:S1.从告警文本中获取攻击者的单步攻击信息;S2.构建攻击活动序列集;S3.构建候选攻击策略;S4.构建攻击策略数据集;S5.预训练;S6.模型训练;S7.攻击策略抽取;S8.人工验证。本方法通过训练模型来判断攻击者的一个候选攻击策略是否为全部的有效攻击步骤,并且这些攻击步骤的组合能完成攻击者的攻击目的;通过这个模型,能够使用枚举候选攻击策略的方式关联出攻击者的全部有效攻击步骤,组成攻击者的攻击策略,而无需定义大量的关联规则;而且在过去的关联经验中未被关联的两个告警也可能被本方法所关联。
-
-
-
-
-
-
-
-
-