-
公开(公告)号:CN115631798B
公开(公告)日:2023-08-08
申请号:CN202211276710.8
申请日:2022-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B40/20 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/084 , G06F18/2415 , G06F18/25
Abstract: 本发明公开了一种基于图对比学习的生物分子分类方法及装置,通过将获取的目标生物分子图输入到预训练的编码器中,将得到的目标生物分子图中的所有节点特征进行融合,得到目标生物分子图标签;编码器的预训练过程包括:将生物分子图输入第一编码器,得到生物分子图特征,将生物分子图输入第二编码器,得到生物分子图正例特征;将构造的生物分子图负例输入到第二编码器中,得到生物分子图负例的负例特征;获取每轮负例入队训练个数,基于生物分子图特征、生物分子图正例特征、负例特征和每轮负例入队训练个数,对第一编码器和第二编码器进行更新,得到预训练的编码器。与现有技术相比,本发明的技术方案能提高生物分子分类的准确性。
-
公开(公告)号:CN115631798A
公开(公告)日:2023-01-20
申请号:CN202211276710.8
申请日:2022-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B40/20 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/084 , G06F18/2415 , G06F18/25
Abstract: 本发明公开了一种基于图对比学习的生物分子分类方法及装置,通过将获取的目标生物分子图输入到预训练的编码器中,将得到的目标生物分子图中的所有节点特征进行融合,得到目标生物分子图标签;编码器的预训练过程包括:将生物分子图输入第一编码器,得到生物分子图特征,将生物分子图输入第二编码器,得到生物分子图正例特征;将构造的生物分子图负例输入到第二编码器中,得到生物分子图负例的负例特征;获取每轮负例入队训练个数,基于生物分子图特征、生物分子图正例特征、负例特征和每轮负例入队训练个数,对第一编码器和第二编码器进行更新,得到预训练的编码器。与现有技术相比,本发明的技术方案能提高生物分子分类的准确性。
-