-
公开(公告)号:CN113597013B
公开(公告)日:2024-03-22
申请号:CN202110895107.7
申请日:2021-08-05
Applicant: 哈尔滨工业大学
IPC: H04W72/566 , H04W72/53 , H04W72/51
Abstract: 一种移动边缘计算中用户移动场景下的协同任务调度方法,属于移动边缘计算技术领域,用以解决现有移动边缘计算中的任务调度方法对于用户处于移动场景时不能有效减少任务的执行时间的问题。本发明的技术要点包括:提出任务紧迫度排序算法对任务进行排序,以让执行时间较为紧迫的任务得到优先执行;提出基于资源匹配的MEC服务器选择算法得到资源匹配度最高的MEC服务器;比较任务的执行时间,调度任务在执行时间最小的MEC服务器或本地移动设备上计算执行。在用户移动场景下,本发明方法在任务平均执行时间和任务超时率上拥有最优性能,在保证用户服务质量的同时优化了任务的平均执行时间。本发明适用于用户移动场景下移动设备与MEC服务器的协同任务调度。
-
公开(公告)号:CN113489604B
公开(公告)日:2022-08-26
申请号:CN202110707656.7
申请日:2021-06-24
IPC: H04L41/14 , H04L41/12 , H04L41/082 , H04L43/0829 , H04L43/0852 , G06F9/455
Abstract: 本发明公开一种网络仿真方法,所述方法包括以下步骤:构建目标网络拓扑结构;获取所述目标网络拓扑结构的目标网络参数;基于所述目标网络参数和最佳估计网络参数,获得配置网络参数;利用所述配置网络参数对所述目标网络拓扑结构进行控制。本发明还公开了一种网络仿真装置、终端设备以及计算机可读存储介质。利用本发明的网络仿真方法,获得的配置网络参数的准确率较高,网络仿真的真实性较好。
-
公开(公告)号:CN111124666B
公开(公告)日:2023-05-12
申请号:CN201911168370.5
申请日:2019-11-25
Applicant: 哈尔滨工业大学
Abstract: 一种移动物联网中的高效、安全的多用户多任务卸载方法,涉及移动物联网移动边缘计算领域,为了实现在时间的约束下将能耗的加权总和最小化,使任务卸载能耗较低。建立通信模型;资源分配策略,量化本地计算和卸载计算的开销;压缩策略,采用JPEG算法对卸载计算时传输的用户数据进行压缩以减少能源消耗;安全策略;优化策略;构建一个考虑将资源分配、压缩和安全性的集成模型,将该模型表述为整数非线性问题,该问题的目标是在时间约束下使能量的加权总和最小化,获得任务卸载决策和任务压缩决策的最优解。减轻移动物联网的网络资源限制,在计算任务卸载的同时,兼顾考虑资源分配,传输数据压缩和安全性,实现在时间的约束下能耗的加权总和最小化。
-
公开(公告)号:CN113597013A
公开(公告)日:2021-11-02
申请号:CN202110895107.7
申请日:2021-08-05
Applicant: 哈尔滨工业大学
Abstract: 一种移动边缘计算中用户移动场景下的协同任务调度方法,属于移动边缘计算技术领域,用以解决现有移动边缘计算中的任务调度方法对于用户处于移动场景时不能有效减少任务的执行时间的问题。本发明的技术要点包括:提出任务紧迫度排序算法对任务进行排序,以让执行时间较为紧迫的任务得到优先执行;提出基于资源匹配的MEC服务器选择算法得到资源匹配度最高的MEC服务器;比较任务的执行时间,调度任务在执行时间最小的MEC服务器或本地移动设备上计算执行。在用户移动场景下,本发明方法在任务平均执行时间和任务超时率上拥有最优性能,在保证用户服务质量的同时优化了任务的平均执行时间。本发明适用于用户移动场景下移动设备与MEC服务器的协同任务调度。
-
公开(公告)号:CN113489604A
公开(公告)日:2021-10-08
申请号:CN202110707656.7
申请日:2021-06-24
Abstract: 本发明公开一种网络仿真方法,所述方法包括以下步骤:构建目标网络拓扑结构;获取所述目标网络拓扑结构的目标网络参数;基于所述目标网络参数和最佳估计网络参数,获得配置网络参数;利用所述配置网络参数对所述目标网络拓扑结构进行控制。本发明还公开了一种网络仿真装置、终端设备以及计算机可读存储介质。利用本发明的网络仿真方法,获得的配置网络参数的准确率较高,网络仿真的真实性较好。
-
公开(公告)号:CN111124666A
公开(公告)日:2020-05-08
申请号:CN201911168370.5
申请日:2019-11-25
Applicant: 哈尔滨工业大学
Abstract: 一种移动物联网中的高效、安全的多用户多任务卸载方法,涉及移动物联网移动边缘计算领域,为了实现在时间的约束下将能耗的加权总和最小化,使任务卸载能耗较低。建立通信模型;资源分配策略,量化本地计算和卸载计算的开销;压缩策略,采用JPEG算法对卸载计算时传输的用户数据进行压缩以减少能源消耗;安全策略;优化策略;构建一个考虑将资源分配、压缩和安全性的集成模型,将该模型表述为整数非线性问题,该问题的目标是在时间约束下使能量的加权总和最小化,获得任务卸载决策和任务压缩决策的最优解。减轻移动物联网的网络资源限制,在计算任务卸载的同时,兼顾考虑资源分配,传输数据压缩和安全性,实现在时间的约束下能耗的加权总和最小化。
-
-
-
-
-