一种云计算环境中的资源管理方法及系统

    公开(公告)号:CN114217974B

    公开(公告)日:2025-01-07

    申请号:CN202111562519.5

    申请日:2021-12-20

    Abstract: 一种云计算环境中的资源管理方法及系统,涉及云计算技术领域,用以解决云计算环境中现有的对于虚拟节点的静态资源管理不能有效提高其运行性能的问题。本发明的技术要点包括:采集虚拟节点的CPU、内存和带宽资源信息,提出一种基于DDPG的资源分配算法根据上述资源信息计算每个虚拟节点的目标资源配置量以获得资源配置决定的结果,并根据该结果对每个虚拟节点的资源进行动态的调节,从而在提高整体资源利用率的基础上提高虚拟节点运行性能;进一步地,在基于DDPG的资源分配算法中,利用Actor网络生成相应的动作输出,并通过一个动作解码过程将基于比率的输出转换为目标资源配置大小。本发明可以整体缩短不同应用程序的完成时间,且不会产生大量系统开销。

    一种移动边缘计算中用户移动场景下的协同任务调度方法

    公开(公告)号:CN113597013A

    公开(公告)日:2021-11-02

    申请号:CN202110895107.7

    申请日:2021-08-05

    Abstract: 一种移动边缘计算中用户移动场景下的协同任务调度方法,属于移动边缘计算技术领域,用以解决现有移动边缘计算中的任务调度方法对于用户处于移动场景时不能有效减少任务的执行时间的问题。本发明的技术要点包括:提出任务紧迫度排序算法对任务进行排序,以让执行时间较为紧迫的任务得到优先执行;提出基于资源匹配的MEC服务器选择算法得到资源匹配度最高的MEC服务器;比较任务的执行时间,调度任务在执行时间最小的MEC服务器或本地移动设备上计算执行。在用户移动场景下,本发明方法在任务平均执行时间和任务超时率上拥有最优性能,在保证用户服务质量的同时优化了任务的平均执行时间。本发明适用于用户移动场景下移动设备与MEC服务器的协同任务调度。

    一种移动边缘计算中用户移动场景下的协同任务调度方法

    公开(公告)号:CN113597013B

    公开(公告)日:2024-03-22

    申请号:CN202110895107.7

    申请日:2021-08-05

    Abstract: 一种移动边缘计算中用户移动场景下的协同任务调度方法,属于移动边缘计算技术领域,用以解决现有移动边缘计算中的任务调度方法对于用户处于移动场景时不能有效减少任务的执行时间的问题。本发明的技术要点包括:提出任务紧迫度排序算法对任务进行排序,以让执行时间较为紧迫的任务得到优先执行;提出基于资源匹配的MEC服务器选择算法得到资源匹配度最高的MEC服务器;比较任务的执行时间,调度任务在执行时间最小的MEC服务器或本地移动设备上计算执行。在用户移动场景下,本发明方法在任务平均执行时间和任务超时率上拥有最优性能,在保证用户服务质量的同时优化了任务的平均执行时间。本发明适用于用户移动场景下移动设备与MEC服务器的协同任务调度。

    一种联邦学习训练加速方法
    4.
    发明公开

    公开(公告)号:CN115408151A

    公开(公告)日:2022-11-29

    申请号:CN202211014211.1

    申请日:2022-08-23

    Abstract: 本发明涉及一种联邦学习训练加速方法。该方法包括:边缘设备根据初始模型参数构建局部模型,根据动态分层决策算法计算获得边缘设备与边缘服务器的训练任务;边缘设备和边缘服务器根据训练任务分别构建前端模型和后端模型,协同训练前端模型和后端模型,获得局部模型参数发送至边缘服务器;边缘服务器根据各个边缘设备发送的局部模型参数进行中间聚合,获得中间模型参数并发送至中心云;中心云根据各个边缘服务端发送的中间模型参数更新全局模型,并将更新后的全局模型的模型参数发送至各个边缘服务器,迭代更新全局模型直至全局模型收敛。本发明的有益效果:保证联邦学习训练准确度的同时,提高联邦学习训练效率。

    一种云计算环境中的资源管理方法及系统

    公开(公告)号:CN114217974A

    公开(公告)日:2022-03-22

    申请号:CN202111562519.5

    申请日:2021-12-20

    Abstract: 一种云计算环境中的资源管理方法及系统,涉及云计算技术领域,用以解决云计算环境中现有的对于虚拟节点的静态资源管理不能有效提高其运行性能的问题。本发明的技术要点包括:采集虚拟节点的CPU、内存和带宽资源信息,提出一种基于DDPG的资源分配算法根据上述资源信息计算每个虚拟节点的目标资源配置量以获得资源配置决定的结果,并根据该结果对每个虚拟节点的资源进行动态的调节,从而在提高整体资源利用率的基础上提高虚拟节点运行性能;进一步地,在基于DDPG的资源分配算法中,利用Actor网络生成相应的动作输出,并通过一个动作解码过程将基于比率的输出转换为目标资源配置大小。本发明可以整体缩短不同应用程序的完成时间,且不会产生大量系统开销。

Patent Agency Ranking