一种基于实体连通图的事件模版构造方法

    公开(公告)号:CN107862037B

    公开(公告)日:2021-07-16

    申请号:CN201711071987.6

    申请日:2017-11-03

    Abstract: 一种基于实体连通图的事件模版构造方法,本发明涉及事件模板的构造方法。本发明的目的是为了解决现有技术在针对特定事件的“检索”、“问答”等人工智能应用中识别结果及提取特定信息不准确;基于事件的篇章相似度难以定量计算以及篇章关键信息难以提取的问题。过程为:一、对每一句抽取三元组;二、视三元组中的三个元素为三个结点;三、将从文本中抽取到的结点均放入到集合S1中;四、利用词向量计算S1中任两个结点的相似度并依此生成连通图;五、计算各结点的PageRank值;六、确定两篇文本陈述的事件间的关系度量值;七、形成多个文本簇;八、构建粗粒度事件模板和细粒度事件模版。本发明用于篇章关键信息提取及相关度计算领域。

    一种基于实体连通图的事件模版构造方法

    公开(公告)号:CN107862037A

    公开(公告)日:2018-03-30

    申请号:CN201711071987.6

    申请日:2017-11-03

    CPC classification number: G06F17/30707 G06F17/30731

    Abstract: 一种基于实体连通图的事件模版构造方法,本发明涉及事件模板的构造方法。本发明的目的是为了解决现有技术在针对特定事件的“检索”、“问答”等人工智能应用中识别结果及提取特定信息不准确;基于事件的篇章相似度难以定量计算以及篇章关键信息难以提取的问题。过程为:一、对每一句抽取三元组;二、视三元组中的三个元素为三个结点;三、将从文本中抽取到的结点均放入到集合S1中;四、利用词向量计算S1中任两个结点的相似度并依此生成连通图;五、计算各结点的PageRank值;六、确定两篇文本陈述的事件间的关系度量值;七、形成多个文本簇;八、构建粗粒度事件模板和细粒度事件模版。本发明用于篇章关键信息提取及相关度计算领域。

Patent Agency Ranking