零指代消解方法、训练零指代消解模型的方法及电子设备

    公开(公告)号:CN112256868B

    公开(公告)日:2025-04-15

    申请号:CN202011069841.X

    申请日:2020-09-30

    Abstract: 本申请适用于终端人工智能技术领域,提供了零指代消解方法、训练零指代消解模型的方法及电子设备。上述训练零指代消解模型的方法包括:将训练文本中的所有词转换为第一向量;其中,训练文本中包括多个先行词和多个零代词,第一向量包括与各个先行词对应的第一先行词向量和与各个零代词对应的第一零代词向量,第一零代词向量中包含零代词的位置信息;将零代词的位置信息融合到第一先行词向量中,得到第二先行词向量;基于第一零代词向量和第二先行词向量,确定每个先行词的理论类别标签;其中,每个先行词对应一个预设类别标签;根据每个先行词的理论类别标签与预设类别标签,对零指代消解模型进行训练。上述方法能够提高零指代消解的准确性。

    一种基于一阶自然逻辑的多项选择问答系统

    公开(公告)号:CN119046431A

    公开(公告)日:2024-11-29

    申请号:CN202411158824.1

    申请日:2024-08-22

    Abstract: 本发明公开了一种基于一阶自然逻辑的多项选择问答系统,包括:预处理模块,用于将问题和候选答案转化为假设;一阶逻辑模块,用于利用一阶逻辑将假设分解为子假设;自然逻辑模块,用于利用自然逻辑从外部语料库改写前提,产生与原始前提传达相同含义的中间前提,并以预定义的最大推理深度λ作为停止标准,迭代生成前提到假设的推理路径;框架构建模块,用于结合一阶逻辑与自然逻辑,集成神经网络构建神经符号推理框架;结果输出模块,用于基于神经符号推理框架,计算中间前提和子假设之间的语义相似度,根据相似度得分输出得分最高的最终选择答案。本发明不仅缩短了推理路径,而且增强了动词短语的对齐。

    一种融入常识知识的生成式对话摘要方法

    公开(公告)号:CN112148863B

    公开(公告)日:2022-07-01

    申请号:CN202011104023.9

    申请日:2020-10-15

    Abstract: 一种融入常识知识的生成式对话摘要方法,属于自然语言处理领域。本发明解决了现有生成式对话摘要方法未利用常识知识而导致生成的对话摘要不准确,抽象性低的问题。本发明方法包括:获取常识知识库ConceptNet与对话摘要数据集SAMSum;利用获取的常识知识库ConceptNet为对话摘要数据集SAMSum引入元组知识,构建异构对话图;练步骤三中构造的对话异构神经网络模型,通过训练的对话异构神经网络模型从一段对话中生成最终对话摘要。本发明应用于对话摘要的生成。

    基于双曲空间的事理图谱增强的因果推理方法及系统

    公开(公告)号:CN114462607A

    公开(公告)日:2022-05-10

    申请号:CN202210131870.7

    申请日:2022-02-14

    Abstract: 本发明公开基于双曲空间的事理图谱增强的因果推理方法及系统,包括,获取事件对及事理图谱,基于事理图谱获取事件对的证据事件,将证据事件及事件对组成因果证据图,其中事件对包括原因事件和结果事件;将因果证据图转换为事件表示,对将事件表示从欧式空间映射到双曲空间中,获取双曲事件表示;对双曲事件表示进行有向因果推理,得到事件对最终嵌入,并对事件对最终嵌入进行计算,得到因果强度分数。通过上述技术方案,本发明能够提高因果推理的稳定性和可解释性。

    一种基于表格层次化建模的结构化数据生成文本方法

    公开(公告)号:CN110516213B

    公开(公告)日:2022-04-15

    申请号:CN201910828514.9

    申请日:2019-09-03

    Abstract: 一种基于表格层次化建模的结构化数据生成文本方法,本发明涉及结构化数据生成文本方法。本发明的目的是为了解决现有结构化数据生成文本只利用了数据本身单一信息,无法衡量实体数据整体情况以及同类型数据的表现差异和多表格数据之间的利用不充分问题。一、将数据集的记录用三元组表示,分别对每条记录所属的行、列维度建模得到该记录的行向量、列向量,并引入时间轴,对不同日期的同类型数据建模得到该记录的时间向量;二、融合行向量、列向量和时间向量得到该记录新的向量表示;三、对每行记录的新向量进行均值池化得到新行向量;四、每个解码时刻,对三得到的向量进行解码,得到当前时刻每条记录的权重。本发明用于表格数据生成文本方法。

    一种文本标注提取方法
    8.
    发明公开

    公开(公告)号:CN114238554A

    公开(公告)日:2022-03-25

    申请号:CN202010942991.0

    申请日:2020-09-09

    Abstract: 本申请提供一种文本标注提取方法。方法应用于人工智能领域。方法包括:服务器接收并响应电子设备发送第一标注请求,启动动态标注服务,其中,动态标注服务对应有第一动态标注模型;服务器接收电子设备发送的第一文本序列以及第一文本序列对应的第一标注信息,其中,第一文本序列包括第一文本信息和第二标签;服务器获取第二文本序列;当第一文本序列的数量大于第一阈值时,服务器通过第一动态标注模型确定出第二文本序列的第二标注信息;服务器基于第二标注信息,提取出第二文本序列中带有第二标签的属性的文字。通过这种方法,当自动标注模型的标注标签变化时,无需重新训练模型,能够提高自动标注的效率和准确性。

    一种基于深度学习的动词短语省略消解方法

    公开(公告)号:CN108681538B

    公开(公告)日:2022-02-22

    申请号:CN201810523282.1

    申请日:2018-05-28

    Abstract: 一种基于深度学习的动词短语省略消解方法,它属于计算机人工智能技术领域。本发明解决了现有动词短语省略消解方法存在的触发词判断和先行短语识别准确率低的问题。本发明对确定好的数据集1和数据集2进行预处理;判断触发词的过程加入了对句子上下文特征和句子级特征的提取,将提取的句子特征转化为向量输入支持向量机,进而根据支持向量机的输出结果确定输入句子的触发词;最后利用多层感知机,从触发词生成的多个候选先行短语中识别出正确的先行短语。本发明提取句子特征时加入了上下文特征和句子级特征,可以使触发词判断的准确率达到90%左右,先行短语识别的准确率达到85%以上。本发明可以应用于计算机人工智能技术领域用。

    一种面向跨语言对话理解的模型预训练系统

    公开(公告)号:CN113312453A

    公开(公告)日:2021-08-27

    申请号:CN202110667409.9

    申请日:2021-06-16

    Abstract: 一种面向跨语言对话理解的模型预训练系统,本发明涉及面向跨语言对话理解的模型预训练系统。本发明的目的是为了解决现有跨语言对话理解场景下由于小语种语料稀缺而导致模型训练效果有限,无法获得准确的对话理解系统,对用户话语无法完成准确的回复的问题。一种面向跨语言对话理解的模型预训练系统包括:数据采集模块、对话领域标签整理合并模块、训练语料整理模块、目标语种确定模块、静态词典确定模块、单词替换模块、编码模块、单词替换预测模块、样本所属对话领域预测模块、整体模型获取模块、训练模块和跨语言对话理解领域下游任务精调模块。本发明用于跨语言对话理解领域。

Patent Agency Ranking