-
公开(公告)号:CN114168727B
公开(公告)日:2024-07-12
申请号:CN202111481843.4
申请日:2021-12-06
Applicant: 哈尔滨工业大学
IPC: G06F16/34 , G06F40/205
Abstract: 面向金融领域的文档级事件主体对抽取的方法、存储介质及设备,属于信息技术领域。为了解决现有的基于句子级的事件抽取的方法不能很好的应用于金融领域内文档的事件抽取,从而存在提取事件信息的性能较低的问题。本发明首先将文档按句进行分割,将第i个句子基于字通过词典映射成句子id,并将句子通过第一个字的Embedding矩阵,然后输入BERT,取其最后一层的编码得到句子中的每个token的编码并得到特征向量C;根据每个事件类型获取对应的t,获取文档级上下文表示eglobal;将每个token的hi,j拼接C、t和eglobal;最后基于前馈神经网络和CRF得到标注结果并最终得到主体对。主要用于金融领域的文档级事件主体对抽取。
-
公开(公告)号:CN114168727A
公开(公告)日:2022-03-11
申请号:CN202111481843.4
申请日:2021-12-06
Applicant: 哈尔滨工业大学
IPC: G06F16/34 , G06F40/205
Abstract: 面向金融领域的文档级事件主体对抽取的方法、存储介质及设备,属于信息技术领域。为了解决现有的基于句子级的事件抽取的方法不能很好的应用于金融领域内文档的事件抽取,从而存在提取事件信息的性能较低的问题。本发明首先将文档按句进行分割,将第i个句子基于字通过词典映射成句子id,并将句子通过第一个字的Embedding矩阵,然后输入BERT,取其最后一层的编码得到句子中的每个token的编码并得到特征向量C;根据每个事件类型获取对应的t,获取文档级上下文表示eglobal;将每个token的hi,j拼接C、t和eglobal;最后基于前馈神经网络和CRF得到标注结果并最终得到主体对。主要用于金融领域的文档级事件主体对抽取。
-
公开(公告)号:CN115712709A
公开(公告)日:2023-02-24
申请号:CN202211451009.5
申请日:2022-11-18
Applicant: 哈尔滨工业大学 , 招商银行股份有限公司
IPC: G06F16/332 , H04N21/44 , G06F40/35
Abstract: 基于多关系图模型的多模态对话问答生成方法,涉及一种多模态对话问答生成方法。本发明为了解决现有的多模态对话系统仅考虑场景序列化信息而导致现有模型效果一般的问题。本发明首先将视频序列化切分为多个视频片段,对于每个片段获取该片段的色彩特征、光流特征和音频特征,并拼接起来,再加入位置信息和模态信息得到各个视频片段的序列表示;将每个视频片段视作顶点,构建基于全联通关系的视频图并输入图卷积神经网络,得到视频隐藏层序列以及与原视频序列的融合表示;然后利用相似的方式处理基于视听场景标题和对话历史对应的词向量得到各自对应的文本隐藏层序列以及与原文本序列的融合表示;最后利用神经网络模型生成回答。
-
-