-
公开(公告)号:CN115569520A
公开(公告)日:2023-01-06
申请号:CN202211184082.0
申请日:2022-09-27
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 一种基于磁场诱导超顺磁性四氧化三铁纳米粒子共混掺杂改性聚醚砜超滤膜的制备方法。本发明属于膜材料制备领域,具体涉及一种基于磁场诱导超顺磁性四氧化三铁纳米粒子共混掺杂改性聚醚砜超滤膜的制备方法。本发明目的是为了解决共混掺杂改性过程添加剂大多分散在膜基质中,造成膜表面亲水性改性效率低,孔径内分布的纳米粒子导致在过滤过程中传质阻力过大,能耗升高的问题。方法:一、制备磁性Fe3O4纳米粒子;二、配制铸膜液;三、涂膜;四、非溶剂诱导相分离反应,得到共混掺杂Fe3O4纳米粒子的聚醚砜超滤膜。本发明用于市政饮用水处理、蛋白质分离纯化和再生水等领域。
-
公开(公告)号:CN115283013A
公开(公告)日:2022-11-04
申请号:CN202211057213.9
申请日:2022-08-31
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
IPC: B01J31/06 , C02F1/72 , B01D71/02 , B01D71/34 , B01D61/14 , B01D67/00 , C02F101/34 , C02F101/38 , C02F101/30
Abstract: 一种纳米二氧化锰有机催化膜的制备方法。本发明涉及一种纳米二氧化锰有机催化膜的制备方法。本发明目的是为了解决催化剂传质效率低,不易分离和回收以及现有超滤膜去除难降解有机污染物效果差的问题。方法:一、配制二氧化锰铸膜液;二、配制支撑层铸膜液;三、将二氧化锰铸膜液和支撑层铸膜液分别静置除泡,得到除泡后的二氧化锰铸膜液和除泡后的支撑层铸膜液;利用双头刮膜刀进行一步原位刮膜,浸入水中进行相转化,获得纳米二氧化锰有机催化膜。本发明用于催化过硫酸盐去除难降解有机微污染物。
-
公开(公告)号:CN115463559B
公开(公告)日:2024-05-31
申请号:CN202211097240.9
申请日:2022-09-08
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 一种基于过一硫酸盐催化氧化进行强化清洗受污染δ‑二氧化锰改性膜的方法,它属于膜清洗方法改性领域。它要解决现有δ‑二氧化锰改性膜在乳化油长期过滤过程中膜污染严重问题。方法:受污染δ‑二氧化锰改性膜浸泡在过一硫酸盐水溶液中,静置接触反应。本发明方法选择过一硫酸盐作为催化清洗试剂,过一硫酸盐具有易于保存且保质期长、操作安全、活性强和价格较为低廉等优点,实现原位过一硫酸盐催化氧化,在膜表面产生活性物质,降解膜表面黏附的油滴,实现膜表面污染物的有效去除,清洗后膜性能恢复到原始水平,不可逆污染显著降低,显著抑制了有机超滤膜在乳化油处理过程中的污染程度。本发明适用于受污染δ‑二氧化锰改性膜的强化清洗。
-
公开(公告)号:CN117085506A
公开(公告)日:2023-11-21
申请号:CN202311215135.5
申请日:2023-09-20
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司
Abstract: 一种Ti掺杂四氧化三铁复合纳米粒子共混改性催化聚醚砜超滤膜的制备方法,本发明涉及一种Ti掺杂四氧化三铁复合纳米粒子共混改性催化聚醚砜超滤膜的制备方法,本发明的目的是为了解决共混膜在制备过程中,催化剂容易分散在膜基质中,不能有效催化降解膜表面污染物,从而影响降解效率的问题,本发明首先将半导体催化剂TiO2掺杂在超顺磁性的Fe3O4上,形成具有超顺磁性的Ti‑Fe3O4复合纳米颗粒。在相转化前,利用磁场对复合纳米粒子的定向驱动作用,使Ti‑Fe3O4复合纳米颗粒在铸膜液中定向迁移。既可以将催化剂富集至膜表面,增强膜表面污染物降解效率,又可以将催化剂固定,防止回收困难。本发明应用于水处理领域。
-
公开(公告)号:CN115463564A
公开(公告)日:2022-12-13
申请号:CN202211097275.2
申请日:2022-09-08
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 一种基于金属多酚网络的超滤膜表面原位生长二氧化锰改性方法,本发明属于膜材料改性领域。本发明为解决现有超滤膜对乳化油截留率低以及膜表面对乳化油污染物排斥作用小的技术问题。改性方法包括:一、制备单宁酸溶液和醋酸锰溶液,混合获得金属多酚网络改性溶液,浸润聚醚砜超滤膜;二、配制醋酸锰生长溶液,浸泡处理,随后进行水热反应;三、在高锰酸钾溶液中浸泡。本发明改性后有机无机复合膜的乳化油截留性能、抗污染性能及长期运行稳定性能显著增强,提升了有机超滤膜在含油废水应用中的处理效果,延长其使用寿命。本发明制备的超滤膜应用于含油废水处理领域。
-
公开(公告)号:CN115463559A
公开(公告)日:2022-12-13
申请号:CN202211097240.9
申请日:2022-09-08
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 一种基于过一硫酸盐催化氧化进行强化清洗受污染δ‑二氧化锰改性膜的方法,它属于膜清洗方法改性领域。它要解决现有δ‑二氧化锰改性膜在乳化油长期过滤过程中膜污染严重问题。方法:受污染δ‑二氧化锰改性膜浸泡在过一硫酸盐水溶液中,静置接触反应。本发明方法选择过一硫酸盐作为催化清洗试剂,过一硫酸盐具有易于保存且保质期长、操作安全、活性强和价格较为低廉等优点,实现原位过一硫酸盐催化氧化,在膜表面产生活性物质,降解膜表面黏附的油滴,实现膜表面污染物的有效去除,清洗后膜性能恢复到原始水平,不可逆污染显著降低,显著抑制了有机超滤膜在乳化油处理过程中的污染程度。本发明适用于受污染δ‑二氧化锰改性膜的强化清洗。
-
公开(公告)号:CN115463564B
公开(公告)日:2023-08-15
申请号:CN202211097275.2
申请日:2022-09-08
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 一种基于金属多酚网络的超滤膜表面原位生长二氧化锰改性方法,本发明属于膜材料改性领域。本发明为解决现有超滤膜对乳化油截留率低以及膜表面对乳化油污染物排斥作用小的技术问题。改性方法包括:一、制备单宁酸溶液和醋酸锰溶液,混合获得金属多酚网络改性溶液,浸润聚醚砜超滤膜;二、配制醋酸锰生长溶液,浸泡处理,随后进行水热反应;三、在高锰酸钾溶液中浸泡。本发明改性后有机无机复合膜的乳化油截留性能、抗污染性能及长期运行稳定性能显著增强,提升了有机超滤膜在含油废水应用中的处理效果,延长其使用寿命。本发明制备的超滤膜应用于含油废水处理领域。
-
公开(公告)号:CN115414786A
公开(公告)日:2022-12-02
申请号:CN202211055348.1
申请日:2022-08-31
Applicant: 哈尔滨工业大学水资源国家工程研究中心有限公司 , 哈尔滨工业大学 , 广东粤海水务投资有限公司 , 粤海水资源工程研究中心(广东)有限公司
Abstract: 基于原位共铸的抗污染有机‑无机复合超滤膜的制备方法,涉及膜制备技术领域。本发明的目的是为了解决传统的MnO2/PVDF复合膜中由于MnO2分布在整个膜体中对膜性能的提升作用不明显,同时会削弱聚合物材料的优势的问题。本发明采用一步原位共铸制备法,分别制备涂覆层溶液和支撑层溶液,同时操作两种不同的溶液制备具有双层结构的平板复合膜,不仅将MnO2‑无机纳米颗粒富集到膜表面的上层,而且在支撑层中保留了PVDF材料的优点。本发明可获得基于原位共铸的抗污染有机‑无机复合超滤膜的制备方法。
-
公开(公告)号:CN119751111A
公开(公告)日:2025-04-04
申请号:CN202411848559.X
申请日:2024-12-16
Applicant: 哈尔滨工业大学
IPC: C04B38/06 , C04B35/10 , C04B35/622 , C04B35/63 , B01D71/02 , B01D69/02 , B01D67/00 , C02F1/44 , C02F1/72 , C02F1/78 , B01J23/745 , C02F101/30
Abstract: 本发明公开了一种负载高含量氧化铁的氧化铝基催化陶瓷膜及其制备方法和应用,属于无机功能陶瓷微滤膜及其制备技术领域。本发明解决了现有催化陶瓷膜的催化剂负载量低限制其催化作用以及制备工艺复杂、成本高等问题。本发明在制备氧化铝基陶瓷膜时通过添加二氧化硅在烧结过程中生成液相促进烧结,并在烧结前将催化剂α‑Fe2O3添加到陶瓷粉体中,采用一步成型共烧结的方式制备得到具有催化功能的陶瓷膜,简化制备工艺的同时,提高陶瓷膜表面和内部α‑Fe2O3的含量,利用Fe3+活化晶格,促进烧结。且随着α‑Fe2O3添加量的增加,烧结过程中小孔隙被排出,孔壁收缩,大孔隙产生,陶瓷膜孔径逐渐增大,提高陶瓷膜渗透通量。
-
公开(公告)号:CN113912223A
公开(公告)日:2022-01-11
申请号:CN202010647944.3
申请日:2020-07-07
Applicant: 哈尔滨工业大学
IPC: C02F9/06 , C02F103/04
Abstract: 本发明提供了一种纯水‑超纯水梯级制备系统及方法,梯级制备系统包括反渗透单元、离子交换单元和电去离子单元,反渗透单元包括原水水箱、一级增压泵、二级增压泵、一级反渗透装置、二级反渗透装置、除二氧化碳器和脱碳水箱,离子交换单元包括离子交换装置进水水泵、离子交换装置和纯水水箱,电去离子单元包括电去离子装置、浓水水箱和超纯水水箱。原水水箱、一级反渗透装置、二级反渗透装置和反渗透储水箱依次连通,反渗透储水箱与除二氧化碳器、脱碳水箱、离子交换装置、纯水水箱、电去离子装置和超纯水水箱依次连通,本发明能够同时获得纯水和超纯水,以满足不同行业需求,实现梯级利用,并且大大减弱电去离子装置膜污染。
-
-
-
-
-
-
-
-
-