-
公开(公告)号:CN114515156B
公开(公告)日:2023-09-15
申请号:CN202210124585.2
申请日:2022-02-10
Applicant: 南京邮电大学
Abstract: 本发明所述的基于交叉可视图的睡眠心脑信号关联性分析方法,首先构建心电和脑电生理序列的前向和后向原始可视度序列,并通过元素替换的方式构建心脑信号之间的前向和后向交叉可视度序列,然后计算原始‑交叉可视度概率分布的差异性衡量心脑之间的因果关联性。基于交叉可视图的睡眠心脑信号关联性分析方法有效地解决了根据时间序列可视状态的特征关系衡量生理序列关联性的问题。
-
公开(公告)号:CN114947793B
公开(公告)日:2024-10-18
申请号:CN202210527997.0
申请日:2022-05-16
Applicant: 南京邮电大学
IPC: A61B5/0245 , A61B5/00 , G06F18/213
Abstract: 基于模糊等符号分布的生理信号幅度波动分析方法,有效地解决了时间序列等符号较少以及边界误差问题的问题。通过对区间元素叠加符号化,计算符号类型的概率分布,从而避免了原始符号区间划分方法的缺陷。在衡量等符号分布的过程中,计算相邻元素的模糊符号概率差异性,然后计算并统计模糊符号序列的等状态分布。心率信号的测试结果表明,基于叠加区间的模糊等符号分布分析方法由于有效避免了原始符号化方法中的边界误差问题,因此能够更加有效地提取生理时间序列的等状态分布特征。
-
公开(公告)号:CN115813407B
公开(公告)日:2024-05-24
申请号:CN202211422724.6
申请日:2022-11-15
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于模糊阶跃向量波动的睡眠脑电分期方法,属于生理信号处理和特征提取领域,具体包括:获取长度为L的睡眠脑电序列X(t),提取多维向量,构建睡眠脑电向量距离序列X'(t);设定X'(t)的上升和下降双向阈值节点;选择睡眠脑电上升和下降向量距离的模糊转化函数;选取睡眠脑电的阶跃区间,设定向量距离转化方式;通过模糊阶跃转化的上升和下降向量距离序列进行睡眠脑电向量波动特征提取。本发明在阈值范围内采用模糊渐转化方式,后在特定向量距离区间内采用阶跃转化方式,并且对上升和下降睡眠脑电向量距离波动进行区分处理,可有效解决当前基于向量距离等状态分布的不足,进而提取更加全面的睡眠脑电信号向量距离波动特征。
-
公开(公告)号:CN114515156A
公开(公告)日:2022-05-20
申请号:CN202210124585.2
申请日:2022-02-10
Applicant: 南京邮电大学
Abstract: 本发明所述的基于交叉可视图的睡眠心脑信号关联性分析方法,首先构建心电和脑电生理序列的前向和后向原始可视度序列,并通过元素替换的方式构建心脑信号之间的前向和后向交叉可视度序列,然后计算原始‑交叉可视度概率分布的差异性衡量心脑之间的因果关联性。基于交叉可视图的睡眠心脑信号关联性分析方法有效地解决了根据时间序列可视状态的特征关系衡量生理序列关联性的问题。
-
公开(公告)号:CN115813407A
公开(公告)日:2023-03-21
申请号:CN202211422724.6
申请日:2022-11-15
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于模糊阶跃向量波动的睡眠脑电分期方法,属于生理信号处理和特征提取领域,具体包括:获取长度为L的睡眠脑电序列X(t),提取多维向量,构建睡眠脑电向量距离序列X'(t);设定X'(t)的上升和下降双向阈值节点;选择睡眠脑电上升和下降向量距离的模糊转化函数;选取睡眠脑电的阶跃区间,设定向量距离转化方式;通过模糊阶跃转化的上升和下降向量距离序列进行睡眠脑电向量波动特征提取。本发明在阈值范围内采用模糊渐转化方式,后在特定向量距离区间内采用阶跃转化方式,并且对上升和下降睡眠脑电向量距离波动进行区分处理,可有效解决当前基于向量距离等状态分布的不足,进而提取更加全面的睡眠脑电信号向量距离波动特征。
-
公开(公告)号:CN114947793A
公开(公告)日:2022-08-30
申请号:CN202210527997.0
申请日:2022-05-16
Applicant: 南京邮电大学
IPC: A61B5/0245 , A61B5/00 , G06K9/00
Abstract: 基于模糊等符号分布的生理信号幅度波动分析方法,有效地解决了时间序列等符号较少以及边界误差问题的问题。通过对区间元素叠加符号化,计算符号类型的概率分布,从而避免了原始符号区间划分方法的缺陷。在衡量等符号分布的过程中,计算相邻元素的模糊符号概率差异性,然后计算并统计模糊符号序列的等状态分布。心率信号的测试结果表明,基于叠加区间的模糊等符号分布分析方法由于有效避免了原始符号化方法中的边界误差问题,因此能够更加有效地提取生理时间序列的等状态分布特征。
-
-
-
-
-