一种命名实体识别模型的训练方法

    公开(公告)号:CN114881031B

    公开(公告)日:2025-05-23

    申请号:CN202210428560.1

    申请日:2022-04-22

    Applicant: 南京大学

    Abstract: 本发明公开了一种命名实体识别模型的训练方法,利用预训练好的成分句法分析器,构建出输入文本的成分分析树;基于生成规则,通过所述成分分析树形成关键句法成分候选集合;通过掩蔽不同的关键句法成分,筛选出所述关键句法成分候选集合中最重要的两个关键句法成分;分别掩蔽实体和最重要的两个关键句法成分,得到两种词嵌入并引入一种门控机制对两种词嵌入进行融合,形成每个词最终的词嵌入表示;将文本中所述每个词最终的词嵌入表示作为输入,输入条件随机场中进行训练,得到命名实体识别模型。本发明加强了最终词嵌入的表达能力;省去标注样本数据所需的人力成本;有效减轻整个句子复杂语义的影响,简化人类阅读和理解的过程,可解释性较强。

    一种命名实体识别模型的训练方法

    公开(公告)号:CN114881031A

    公开(公告)日:2022-08-09

    申请号:CN202210428560.1

    申请日:2022-04-22

    Applicant: 南京大学

    Abstract: 本发明公开了一种命名实体识别模型的训练方法,利用预训练好的成分句法分析器,构建出输入文本的成分分析树;基于生成规则,通过所述成分分析树形成关键句法成分候选集合;通过掩蔽不同的关键句法成分,筛选出所述关键句法成分候选集合中最重要的两个关键句法成分;分别掩蔽实体和最重要的两个关键句法成分,得到两种词嵌入并引入一种门控机制对两种词嵌入进行融合,形成每个词最终的词嵌入表示;将文本中所述每个词最终的词嵌入表示作为输入,输入条件随机场中进行训练,得到命名实体识别模型。本发明加强了最终词嵌入的表达能力;省去标注样本数据所需的人力成本;有效减轻整个句子复杂语义的影响,简化人类阅读和理解的过程,可解释性较强。

Patent Agency Ranking