-
公开(公告)号:CN113095092A
公开(公告)日:2021-07-09
申请号:CN202110416255.6
申请日:2021-04-19
Applicant: 南京大学
IPC: G06F40/58 , G06F40/211 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种通过建模协同关系提高非自回归神经机器翻译质量的方法,将源端表示结合目标语言序列的长度构造非自回归神经机器翻译模型中解码器的输入,然后结合依存语法树、源端表示、解码器输入得到目标语言序列的协同关系矩阵,最后将目标语言序列的协同关系矩阵集成于非自回归神经机器翻译模型中的解码器。本发明通过依存语法树来建模目标序列中词与词之间的协同关系,在兼顾依赖关系的同时使翻译质量获得了显著的提升。
-
公开(公告)号:CN114881031B
公开(公告)日:2025-05-23
申请号:CN202210428560.1
申请日:2022-04-22
Applicant: 南京大学
IPC: G06F40/295 , G06F40/30 , G06F16/28
Abstract: 本发明公开了一种命名实体识别模型的训练方法,利用预训练好的成分句法分析器,构建出输入文本的成分分析树;基于生成规则,通过所述成分分析树形成关键句法成分候选集合;通过掩蔽不同的关键句法成分,筛选出所述关键句法成分候选集合中最重要的两个关键句法成分;分别掩蔽实体和最重要的两个关键句法成分,得到两种词嵌入并引入一种门控机制对两种词嵌入进行融合,形成每个词最终的词嵌入表示;将文本中所述每个词最终的词嵌入表示作为输入,输入条件随机场中进行训练,得到命名实体识别模型。本发明加强了最终词嵌入的表达能力;省去标注样本数据所需的人力成本;有效减轻整个句子复杂语义的影响,简化人类阅读和理解的过程,可解释性较强。
-
公开(公告)号:CN113095092B
公开(公告)日:2024-05-31
申请号:CN202110416255.6
申请日:2021-04-19
Applicant: 南京大学
IPC: G06F40/58 , G06F40/211 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了一种通过建模协同关系提高非自回归神经机器翻译质量的方法,将源端表示结合目标语言序列的长度构造非自回归神经机器翻译模型中解码器的输入,然后结合依存语法树、源端表示、解码器输入得到目标语言序列的协同关系矩阵,最后将目标语言序列的协同关系矩阵集成于非自回归神经机器翻译模型中的解码器。本发明通过依存语法树来建模目标序列中词与词之间的协同关系,在兼顾依赖关系的同时使翻译质量获得了显著的提升。
-
公开(公告)号:CN114881031A
公开(公告)日:2022-08-09
申请号:CN202210428560.1
申请日:2022-04-22
Applicant: 南京大学
IPC: G06F40/295 , G06F40/30 , G06F16/28
Abstract: 本发明公开了一种命名实体识别模型的训练方法,利用预训练好的成分句法分析器,构建出输入文本的成分分析树;基于生成规则,通过所述成分分析树形成关键句法成分候选集合;通过掩蔽不同的关键句法成分,筛选出所述关键句法成分候选集合中最重要的两个关键句法成分;分别掩蔽实体和最重要的两个关键句法成分,得到两种词嵌入并引入一种门控机制对两种词嵌入进行融合,形成每个词最终的词嵌入表示;将文本中所述每个词最终的词嵌入表示作为输入,输入条件随机场中进行训练,得到命名实体识别模型。本发明加强了最终词嵌入的表达能力;省去标注样本数据所需的人力成本;有效减轻整个句子复杂语义的影响,简化人类阅读和理解的过程,可解释性较强。
-
-
-