-
公开(公告)号:CN113455752A
公开(公告)日:2021-10-01
申请号:CN202110716218.7
申请日:2021-06-28
Applicant: 襄阳华智科技有限公司 , 华中科技大学 , 襄阳华中科技大学先进制造工程研究院
IPC: A41D13/005
Abstract: 本发明公开了一种面式降温的智能舒适液冷服,包括服装本体、主管路、支管路、动力泵、控制板和冷量模块;服装本体包括从外至内顺次设置的第一织物层、第一防水透气膜、多孔介质层、第二防水透气膜和第二织物层;第一防水透气膜、多孔介质层、第二防水透气膜形成密封薄层域;支管路的出口嵌入在多孔介质层内部,其进口连接至动力泵;动力泵还与冷量模块相连;主管路的入口和出口分别与密封薄层域和冷量模块相连;冷量模块包含降温介质;动力泵在电路板的作用下将冷量模块中的降温介质抽出,并通过支管路将降温介质送入至多孔介质层,最终由主管路送入流回冷量模块。本发明能消除液冷服管路的异物感和温度不均匀的不舒适感,提高个体穿着的舒适性。
-
公开(公告)号:CN113455752B
公开(公告)日:2023-09-08
申请号:CN202110716218.7
申请日:2021-06-28
Applicant: 襄阳华智科技有限公司 , 华中科技大学 , 襄阳华中科技大学先进制造工程研究院
IPC: A41D13/005
Abstract: 本发明公开了一种面式降温的智能舒适液冷服,包括服装本体、主管路、支管路、动力泵、控制板和冷量模块;服装本体包括从外至内顺次设置的第一织物层、第一防水透气膜、多孔介质层、第二防水透气膜和第二织物层;第一防水透气膜、多孔介质层、第二防水透气膜形成密封薄层域;支管路的出口嵌入在多孔介质层内部,其进口连接至动力泵;动力泵还与冷量模块相连;主管路的入口和出口分别与密封薄层域和冷量模块相连;冷量模块包含降温介质;动力泵在电路板的作用下将冷量模块中的降温介质抽出,并通过支管路将降温介质送入至多孔介质层,最终由主管路送入流回冷量模块。本发明能消除液冷服管路的异物感和温度不均匀的不舒适感,提高个体穿着的舒适性。
-
公开(公告)号:CN115286235A
公开(公告)日:2022-11-04
申请号:CN202210844161.3
申请日:2022-07-18
Applicant: 华中科技大学
Abstract: 本发明属于无机玻璃的相关技术领域,并公开了一种致密无机玻璃掺杂量子点复合材料的制备方法及产品。该制备方法包括:选取氨基功能化的硅氧烷前驱体、巯基功能化的硅氧烷前驱体以及量子点作为原料,将三者混合搅拌至溶胶态,干燥,以此获得所需的均匀且无开裂的二氧化硅无机玻璃。本发明在无催化剂的条件下进行反应,避免催化剂对量子点性能的影响,选用氨基功能化和巯基功能化的硅氧烷前驱体作为原料,由于氨基的带碱性、巯基带酸性,二者相互反应实现反应体系中PH的调节,替代催化剂的作用,同时二者比例的调节还能控制反应速率,实现无碎裂的玻璃的制备。通过本发明,量子点玻璃制备中发光性能衰减和易自碎裂的问题。
-
公开(公告)号:CN115197454A
公开(公告)日:2022-10-18
申请号:CN202210867165.3
申请日:2022-07-22
Applicant: 华中科技大学
IPC: C08J5/18 , C08L63/00 , C08L83/04 , C08L75/04 , C08L101/00 , C08L1/28 , C08L29/04 , C08L23/06 , C08L39/06 , C08K9/04 , C08K7/06 , C08K3/04 , C08K3/38 , B29B15/12 , B01D29/05 , B01D29/76 , B01D29/80 , B01D29/84
Abstract: 本发明属于高分子复合材料相关技术领域,并公开了一种辐射状微结构热复合材料的制备方法、装置和产品。该方法包括:S1将导热填料与表面活性剂和去离子水混合均匀,形成导热填料分散液;S2将导热填料分散液进行抽滤,待导热填料完全沉降在滤膜上后,在导热填料中添加高分子水溶液固定导热填料之间的相对位置,抽离去离子水,从而在滤膜上形成预设排列形状的导热填料沉积体;S3将导热填料沉积体冷冻降温,使得其中残留的水分凝固成固体,持续冷冻干燥,直至沉积体中的残留水分完全升华;S4将热固性聚合物注入沉积体中,升温固化,以此获得预设排列形状的热复合材料。通过本发明,解决热复合材料中无法调控导热填料局部取向的问题。
-
公开(公告)号:CN113363369B
公开(公告)日:2022-09-20
申请号:CN202110602123.2
申请日:2021-05-31
Applicant: 华中科技大学
Abstract: 本发明公开了一种LED量子点散热翅片、LED及其制备方法,属于白光LED封装领域。本发明通过将量子点、硅胶以及高导热系数材料颗粒充分混合后按照翅片预设结构参数固化成型,所述翅片的结构具有空隙,以为LED芯片和金线留出空间以及用于在封装时填充荧光粉和硅胶,获得具有优良散热性能且几乎不影响光学性能的翅片,将该翅片应用于量子点白光LED的封装当中,可有效降低其工作温度,减少高温对量子点和LED发光性能的影响,提高其寿命和工作稳定性。
-
公开(公告)号:CN118421296A
公开(公告)日:2024-08-02
申请号:CN202410503775.4
申请日:2024-04-25
Applicant: 华中科技大学
Abstract: 本发明属于荧光复合材料相关技术领域,其公开了一种径向导热的量子点荧光复合材料及其制备方法和应用。该复合材料为片状,包括:由不吸光的导热纤维沿径向排列形成的辐射状网络,以及填充在辐射状网络中的量子点和硅胶。本发明将导热纤维沿径向均匀排布形成辐射状网络,再通过抽真空使量子点和硅胶混合、充分渗透入网络中,固化得到复合材料。在本发明中由于辐射状排列的导热纤维在低导热的硅胶基体中构建了长程连续的导热通路,能够高效地强化复合材料的散热能力。将该复合材料应用于发光器件中能够有效降低其工作温度,减少高温对量子点及荧光粉发光性能的影响,提升发光器件在高功率下的光学性能以及稳定性。
-
公开(公告)号:CN111334280A
公开(公告)日:2020-06-26
申请号:CN202010050746.9
申请日:2020-01-17
Applicant: 华中科技大学
Abstract: 本发明属于白光LED领域,并具体公开了一种荧光粉量子点复合颗粒及其制备方法和应用。该方法包括如下步骤:在荧光粉的表面制备二氧化硅,从而形成荧光粉-二氧化硅的复合结构;对荧光粉-二氧化硅进行表面正电修饰,得到带正电的荧光粉-二氧化硅;对量子点进行表面负电修饰,得到带负电的量子点;通过静电吸附作用使得带负电的量子点吸附在带正电的荧光粉-二氧化硅的表面,以此制得荧光粉量子点复合颗粒。采用本发明提供方法制备的荧光粉量子点复合颗粒在封装过程中保持了荧光粉和量子点的相对静止,确保量子点白光LED的光学一致性,解决了因荧光粉、量子点粒径相差悬殊造成的沉降分层问题。
-
公开(公告)号:CN108087984A
公开(公告)日:2018-05-29
申请号:CN201810087936.0
申请日:2018-01-30
Applicant: 华中科技大学
Abstract: 本发明属于空气净化设备领域,并公开了一种房间内空气循环净化系统,包括空气净化装置、二氧化碳浓度传感器、自动控制装置和双向风机,所述空气净化装置包括太阳能聚光器;所述双向风机上连接循环管路;所述循环管路在对应于所述太阳能聚光器的管段的内部设置有碱土金属氧化物吸附剂,所述太阳能聚光器对碱土金属氧化物吸附剂进行加热。本系统将碱土金属氧化物吸附剂吸附和太阳能聚光器集为一体,实现吸附二氧化碳和氧化脱除有机气体等功能;还结合双向风机,实现动态循环净化房间内空气,为人员集中的房间内环境里提供清洁的房间内空气,提高环境舒适度;本发明具有净化效果好,吸附剂成本低廉和节约能耗等优点。
-
公开(公告)号:CN115286235B
公开(公告)日:2024-02-02
申请号:CN202210844161.3
申请日:2022-07-18
Applicant: 华中科技大学
Abstract: 本发明属于无机玻璃的相关技术领域,并公开了一种致密无机玻璃掺杂量子点复合材料的制备方法及产品。该制备方法包括:选取氨基功能化的硅氧烷前驱体、巯基功能化的硅氧烷前驱体以及量子点作为原料,将三者混合搅拌至溶胶态,干燥,以此获得所需的均匀且无开裂的二氧化硅无机玻璃。本发明在无催化剂的条件下进行反应,避免催化剂对量子点性能的影响,选用氨基功能化和巯基功能化的硅氧烷前驱体作为原料,由于氨基的带碱性、巯基带酸性,二者相互反应实现反应体系中PH的调节,替代催化剂的作用,同时二者比例的调节还能控制反应速率,实现无碎裂的玻璃的制备。通过本发明,量子点玻璃制备中发光性能衰减和易自碎裂的问题。
-
公开(公告)号:CN113363369A
公开(公告)日:2021-09-07
申请号:CN202110602123.2
申请日:2021-05-31
Applicant: 华中科技大学
Abstract: 本发明公开了一种LED量子点散热翅片、LED及其制备方法,属于白光LED封装领域。本发明通过将量子点、硅胶以及高导热系数材料颗粒充分混合后按照翅片预设结构参数固化成型,所述翅片的结构具有空隙,以为LED芯片和金线留出空间以及用于在封装时填充荧光粉和硅胶,获得具有优良散热性能且几乎不影响光学性能的翅片,将该翅片应用于量子点白光LED的封装当中,可有效降低其工作温度,减少高温对量子点和LED发光性能的影响,提高其寿命和工作稳定性。
-
-
-
-
-
-
-
-
-