一种融合时空特征学习的农业干旱预测方法及系统

    公开(公告)号:CN119513599A

    公开(公告)日:2025-02-25

    申请号:CN202411563821.6

    申请日:2024-11-05

    Abstract: 本发明提供一种融合时空特征学习的农业干旱预测方法及系统,包括:数据收集及预处理;构建干旱预测模型,包括空间特征提取模块、时空特征学习模块和序列预测模块;构建干旱事件识别预测模型;所述干旱事件识别预测模型对所述序列预测模块预测得到的未来连续M天的标准化土壤湿度指数SMI序列进行分析,提取干旱事件,并分析得到严重干旱事件空间质心移动特征,预测得到未来干旱时空变化情况。本发明综合考虑干旱的时间和空间属性,利用高精度栅格气象数据,并利用多个水文气象要素输入训练好的卷积神经网络与深度学习耦合模型中预测未来干旱指标,在保持模型复杂度在合适范围内的同时高效对干旱进行预警,为干旱防治及水资源管理提供技术指导。

Patent Agency Ranking