一种基于滤波增强自编码器的电能表异常检测方法及装置

    公开(公告)号:CN117272055B

    公开(公告)日:2024-02-06

    申请号:CN202311567852.4

    申请日:2023-11-23

    摘要: 本发明涉及一种基于滤波增强自编码器的电能表异常检测方法及装置,属于电力设备检测技术领域。将预处理后的多维时间序列数据输入自编码器和滤波器,输出第一重构多维时间序列数据和第一噪声分量,将第一重构多维时间序列数据输入自编码器和滤波器,输出第二重构多维时间序列数据和第二噪声分量;构建自编码器损失函数和滤波器损失函数,并基于自编码器损失函数和滤波器损失函数构建电能表异常检测损失函数以对自编码器和滤波器进行迭代训练,将训练好的自编码器作为电能表异常检测模型以对待检测多维时间序列数据进行检测。本发明减小了噪声和异常对自编码器的干扰,提高了重构(56)对比文件US 2023351158 A1,2023.11.02白雅玲.基于深度学习的客户用能分类及异常检测研究《.中国优秀硕士学位论文全文数据库 工程科技II辑》.2023,C042-2856.曹帅.基于深度学习的脑电信号分类方法研究《.中国优秀硕士学位论文全文数据库 医药卫生科技辑》.2018,E080-17.赵经宇.基于无监督学习的网络异常流量检测研究《.中国优秀硕士学位论文全文数据库 信息科技辑》.2023,I139-159.蔡木庆.基于深度学习的复杂时间序列分析和预测《.中国优秀硕士学位论文全文数据库 基础科学辑》.2021,A002-922.Jae Seok Do 等.LSTM-Autoencoder forVibration Anomaly Detection in VerticalCarousel Storage and Retrieval System.《Sensors》.2023,1-22.

    一种基于近邻搜索分簇的电力调度监控数据异常检测方法

    公开(公告)号:CN114722947A

    公开(公告)日:2022-07-08

    申请号:CN202210383775.6

    申请日:2022-04-12

    IPC分类号: G06K9/62 G06N20/00 G06Q50/06

    摘要: 本发明实施例提出了一种基于近邻搜索分簇的电力调度监控数据异常检测方法,包括:将带正异常标签的电力调度监控历史数据作为训练数据集输入,通过计算样本之间的欧氏距离寻找异常样本在特征空间中的k个近邻;通过异常样本的近邻标签确定该样本是否为噪声或属于某个异常样本簇,并在该样本近邻中依次迭代搜索直到不再找到更多的属于该簇的异常样本;对分簇后的数据过滤噪声并计算每个簇中需要生成的异常样本数量,据此利用SMOTE线性插值在各个簇内合成新样本以平衡数据集;使用平衡后的数据集训练随机森林模型,以检测电力调度监控数据中的异常样本。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于时空异常Transformer的电力调度监控数据异常检测方法

    公开(公告)号:CN117056839A

    公开(公告)日:2023-11-14

    申请号:CN202310806501.8

    申请日:2023-07-03

    摘要: 本发明实施例提出了基于时空异常Transformer的电力调度监控数据异常检测方法,包括:构建时空异常Transformer模型,将电力调度监控历史数据作为模型的输入,计算重构误差、时间维关联性偏差和空间维关联性偏差;结合重构误差、时间维关联性偏差和空间维关联性偏差计算模型的损失,将损失作为优化目标对模型进行训练;将待检测的电力调度监控数据作为模型的输入,计算重构误差、时间维关联性偏差和空间维关联性偏差;结合重构误差、时间维关联性偏差和空间维关联性偏差计算输入数据的异常分数,据此判定输入的电力调度监控数据是否为异常。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。

    一种基于迁移学习的双层动态加权磁盘异常检测方法

    公开(公告)号:CN114816814A

    公开(公告)日:2022-07-29

    申请号:CN202210293314.X

    申请日:2022-03-23

    IPC分类号: G06F11/07 G06K9/62 G06N3/08

    摘要: 本发明实施例提出了一种基于迁移学习的双层动态加权磁盘异常检测方法,包括:收集磁盘SMART信息并对磁盘数据集进行属性特征筛选,之后对其进行指数平滑处理得到稳定磁盘数据集,并提取出目标域磁盘数据集以及多个源域磁盘数据集;计算磁盘数据集源域样本与目标域样本的初始权重;训练各源域对应的迁移模型;加权集成各源域所得模型结果,实现对目标域磁盘的故障检测;随着目标域型号磁盘的不断运行,根据所增加新数据样本,进一步提高磁盘异常检测性能;本发明实施例提供的技术方案,能有效提高新投入磁盘的故障检测效果。

    一种基于收敛交叉映射的电力调度自动化系统故障溯源方法

    公开(公告)号:CN116432964A

    公开(公告)日:2023-07-14

    申请号:CN202310403864.7

    申请日:2023-04-14

    摘要: 本发明实施例提出了一种基于收敛交叉映射的电力调度自动化系统故障溯源方法,包括:收集电力调度自动化系统故障前后的运行数据,计算组件故障前后的排列熵,根据排列熵变化量度量组件自身异常程度;计算故障前后组件间收敛交叉映射系数,构建正常状态下电力调度自动化系统的因果图,并根据因果链接变化情况求得组件全局因果关系变化程度;对正常状态下的因果图进行社区划分,在耦合紧密的社区范围内计算组件局部因果关系变化程度,然后结合组件自身异常程度、全局和局部因果关系变化程度拟合故障程度度量指标,根据故障程度排序结果定位故障根因组件。本发明实施例提供的技术方案,能够提高电力调度自动化系统故障溯源的准确性。

    一种基于动静态选择集成的电力调度监控数据异常检测方法

    公开(公告)号:CN114399407A

    公开(公告)日:2022-04-26

    申请号:CN202210147086.5

    申请日:2022-02-17

    IPC分类号: G06Q50/06 G06N3/08 G06K9/62

    摘要: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。