-
公开(公告)号:CN114816814B
公开(公告)日:2025-04-11
申请号:CN202210293314.X
申请日:2022-03-23
Applicant: 北京邮电大学
IPC: G06F11/07 , G06F18/2433 , G06F18/211 , G06F18/10 , G06F18/214 , G06N5/01 , G06N20/20
Abstract: 本发明实施例提出了一种基于迁移学习的双层动态加权磁盘异常检测方法,包括:收集磁盘SMART信息并对磁盘数据集进行属性特征筛选,之后对其进行指数平滑处理得到稳定磁盘数据集,并提取出目标域磁盘数据集以及多个源域磁盘数据集;计算磁盘数据集源域样本与目标域样本的初始权重;训练各源域对应的迁移模型;加权集成各源域所得模型结果,实现对目标域磁盘的故障检测;随着目标域型号磁盘的不断运行,根据所增加新数据样本,进一步提高磁盘异常检测性能;本发明实施例提供的技术方案,能有效提高新投入磁盘的故障检测效果。
-
公开(公告)号:CN113112188B
公开(公告)日:2022-05-17
申请号:CN202110529491.9
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN114399407A
公开(公告)日:2022-04-26
申请号:CN202210147086.5
申请日:2022-02-17
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN114722940B
公开(公告)日:2024-12-31
申请号:CN202210363323.1
申请日:2022-04-07
Applicant: 北京邮电大学
IPC: G06F18/214 , G06F18/2413
Abstract: 本发明实施例提出了一种基于近邻样本对构造的智能电表故障分类方法,包括:将智能电表不同类别下的故障历史数据作为输入数据集,划分得到多个二类数据集;针对每个二类数据集,将每个样本作为目标样本,从其近邻样本池中进行多次随机采样,获得等量的多个同类和异类对照样本组,分别与目标样本组合后得到多个近邻样本对,作为后续分类任务中的正样本或负样本;基于平衡的近邻样本对数据集,构建基于对比学习的模式判别网络用于目标样本与对照样本组的标签匹配任务;对于给定测试样本,任意组合与其对应的不同类别的对照样本组得到大量近邻样本对,经结果集成和逆向推理得到分类器在每个二类数据集下的判别结果,通过软投票得到其故障类别。
-
公开(公告)号:CN115099306B
公开(公告)日:2024-12-20
申请号:CN202210569747.3
申请日:2022-05-24
Applicant: 北京邮电大学
IPC: G06F18/2413 , G06F18/214 , G06F18/23
Abstract: 本发明实施例提出了一种基于多标签置信度比较的智能电表故障分类方法,包括:对智能电表不同故障类别下的历史数据进行划分,得到多个二类数据集,作为输入数据;遍历各二类数据集中的每个样本,将其作为目标样本并在该样本的近邻样本池中进行多次随机采样,构成多个差异化的目标‑近邻样本对;基于由大量目标‑近邻样本对组成的扩充后的新数据集,构建多标签信任判别网络在目标‑近邻样本对内开展目标样本与对照样本组之间的多标签置信度比较;在测试阶段,对于任一待测样本,任意组合其多个不同的对照样本组得到该测试样本的多个目标‑近邻样本对,集成各组预测结果进行反向推理得到在每个二类数据集下的判别结果,通过软投票得到故障类别。
-
公开(公告)号:CN114399407B
公开(公告)日:2024-08-27
申请号:CN202210147086.5
申请日:2022-02-17
Applicant: 北京邮电大学
IPC: G06Q50/06 , G06F18/2431 , G06F18/214 , G06N3/088
Abstract: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN113608968A
公开(公告)日:2021-11-05
申请号:CN202110967252.1
申请日:2021-08-23
Applicant: 北京邮电大学
IPC: G06F11/30
Abstract: 本发明实施例提出了一种基于密度距离综合决策的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据作为输入数据集,通过局部可达距离与核密度估计来计算样本的局部密度;使用自然对数函数作为缩放函数,计算每个样本与其近邻的密度比;通过欧式距离找到每个样本密度比自身大的近邻,计算密度提升距离;将局部密度比与密度提升距离标准化后计算乘积,得到最终的异常分数,并判定数据中的异常样本。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN113112188A
公开(公告)日:2021-07-13
申请号:CN202110529491.9
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN116010875A
公开(公告)日:2023-04-25
申请号:CN202211530445.1
申请日:2022-12-01
Applicant: 国网重庆市电力公司营销服务中心 , 北京邮电大学 , 国家电网有限公司
IPC: G06F18/2415 , G06F18/214 , G06N3/048 , G06N3/08
Abstract: 本申请公开了一种电表故障的分类方法、装置、电子设备及计算机存储介质,涉及电能计量技术领域,解决了目前存在难以判断电表故障类型,造成对电表故障处理不及时,故障处理效率低的问题。该方法包括:将输入数据集划分为二类样本集;建立类别差异约束流模型,分别利用二类样本子集对类别差异约束流模型进行训练,更新参数,得到每个故障类型对应的目标类别差异约束流模型;将二类样本集中每个样本子集输入到对应的目标类别差异约束流模型中,分别得到二类映射样本子集;确定初始分类器,对初始分类器进行训练,得到每个故障类型对应的目标分类器;获取测试样本,确定测试样本对应的故障类型。
-
公开(公告)号:CN112562771B
公开(公告)日:2022-07-26
申请号:CN202011564817.3
申请日:2020-12-25
Applicant: 北京邮电大学
IPC: G11C29/12
Abstract: 本发明实施例提出了一种基于邻域分区与隔离重构的磁盘异常检测方法,包括:收集磁盘SMART信息并筛选出有效的磁盘特征属性组成数据集,对其进行指数平滑处理得到磁盘训练集;多次随机采样训练集获得多个子训练集,在子集中以各点距其最近点的距离为半径构建磁盘特征隔离区域,将不属于任何区域的测试点作为全局异常;对于非全局异常的测试点,将其连续两个近邻点所在区域半径比作为该测试点在此区域的前异常值;包含测试点后重新构建区域,将测试点所处区域重构前后的半径比作为该测试点在此区域的后异常值;结合测试点所处所有区域的前后异常值得到异常分数,本发明实施例提供的技术方案,能有效提高异常磁盘召回率。
-
-
-
-
-
-
-
-
-