-
公开(公告)号:CN113254632B
公开(公告)日:2022-07-22
申请号:CN202110437683.7
申请日:2021-04-22
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于事件检测技术的时间线摘要自动生成方法,包括:S10、将新闻文本集合进行聚类,得到新闻事件的子事件文档集合,每个子事件文档集合对应一个子事件;S20、获取每个子事件文档集合的摘要;S30、对所述子事件进行筛选,自动确定时间线摘要长度L′,以及对应的L′个子事件;S40、获取所述L′个子事件对应的子事件文档集合的摘要,按照日期先后顺序对所述摘要进行排序,输出带有时间戳的摘要序列。以及,基于事件检测技术的时间线摘要自动生成装置,电子设备和存储介质。本发明具有能自动确定时间线摘要的长度,灵活性强,能够处理动态变化的新闻事件等优点。
-
公开(公告)号:CN108763333B
公开(公告)日:2022-05-17
申请号:CN201810445536.2
申请日:2018-05-11
Applicant: 北京航空航天大学 , 国家计算机网络与信息安全管理中心
IPC: G06F16/36 , G06F40/295
Abstract: 本发明则提出一种基于社会媒体的事件图谱构建方法,首先进行多源数据预处理,接着对预处理后的数据进行多源事件信息抽取,然后通过事件关系评价对事件间关系进行判定,最后进行实体信息融合,对异构图中的实体进行属性补全。本发明将事件看做抽象实体,基于社会媒体文本数据对抽取事件基本构成要素,事件进行关联,并融合已有结构化知识库构建事件图谱,这样能够提供更全面更直接的面向事件的信息检索服务,还能通过将传统非结构化文本内容的研究转化为基于图的研究,有利于发掘更深层次的信息。
-
公开(公告)号:CN113312478A
公开(公告)日:2021-08-27
申请号:CN202110445975.5
申请日:2021-04-25
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/35 , G06F40/289 , G06F40/30 , G06K9/62 , G06F40/216 , G06N5/02
Abstract: 本发明公开了基于阅读理解的观点挖掘方法,包括:构建领域情感观点知识库,其内包含领域情感观点词,每个领域情感观点词对应一个情感分类标签和一个立场分类标签;基于所述领域情感观点知识库和事件观点训练文本集,对预训练语言模型进行训练,获得情感预训练语言模型,所述情感预训练语言模型中嵌入有表示输入文本的情感和观点信息;从待抽取事件文本中抽取事件观点文本;将所述事件观点文本输入所述情感预训练语言模型中,并对其输出的内容进行编码、句子特征提取和分类,获得待抽取事件文本中观点的情感和立场;以及,基于阅读理解的观点挖掘装置。本发明具有使观点挖掘结果更加准确的优点。
-
公开(公告)号:CN113254632A
公开(公告)日:2021-08-13
申请号:CN202110437683.7
申请日:2021-04-22
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于事件检测技术的时间线摘要自动生成方法,包括:S10、将新闻文本集合进行聚类,得到新闻事件的子事件文档集合,每个子事件文档集合对应一个子事件;S20、获取每个子事件文档集合的摘要;S30、对所述子事件进行筛选,自动确定时间线摘要长度L′,以及对应的L′个子事件;S40、获取所述L′个子事件对应的子事件文档集合的摘要,按照日期先后顺序对所述摘要进行排序,输出带有时间戳的摘要序列。以及,基于事件检测技术的时间线摘要自动生成装置,电子设备和存储介质。本发明具有能自动确定时间线摘要的长度,灵活性强,能够处理动态变化的新闻事件等优点。
-
公开(公告)号:CN109960756B
公开(公告)日:2021-04-09
申请号:CN201910207437.5
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/953 , G06F16/34 , G06F16/35 , G06F40/211
Abstract: 本发明公开了一种新闻事件信息归纳方法,包括:收集新闻素材,创建新闻库;从新闻库中获取目标事件的所有新闻文本,并进行热度分析,获取拐点新闻文本,抽取所述拐点新闻文本中的事件信息并保存;其中,获取拐点新闻文本的方法包括:统计所有新闻文本的热度值,按照新闻文本发布的时间顺序排序,构建热度值随时间变化的曲线图,取曲线图的所有极大点对应的新闻文本,即为所述拐点新闻文本,所述热度值为新闻的页面浏览量和网站独立访客量之和。本发明的方法通过选择对于目标新闻事件处于关键节点时的新闻文本——即拐点新闻文本进行摘要分析处理,准确地反映了新闻事件的发展态势。
-
公开(公告)号:CN109977219A
公开(公告)日:2019-07-05
申请号:CN201910207415.9
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于启发式规则的文本摘要自动生成方法,包括:S1、以文本的段落、句子顺序作为启发式语序,将新闻正文分为开始段落、中间段落和结尾段落,并以句子和片段为粒度对各段落进行启发式分割;S2、先以句子为粒度,分别抽取各段落的目标句子,得到各段落的句子摘要集合,再以所述句子摘要集合中的片段为粒度,分别抽取各段落的目标片段,得到各段落的片段摘要集合;S3、去除所述片段摘要集合中的冗余片段,将筛选出的片段按照片段出现的顺序组合,生成文本摘要。以及,基于启发式规则的文本摘要自动生成装置。采用本发明的方法生成的文本摘要的句子组织连贯性好,可读性强。
-
公开(公告)号:CN109977219B
公开(公告)日:2021-04-09
申请号:CN201910207415.9
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/34 , G06F40/211 , G06F40/289 , G06Q30/02 , G06Q30/06 , G06Q50/30
Abstract: 本发明公开了基于启发式规则的文本摘要自动生成方法,包括:S1、以文本的段落、句子顺序作为启发式语序,将新闻正文分为开始段落、中间段落和结尾段落,并以句子和片段为粒度对各段落进行启发式分割;S2、先以句子为粒度,分别抽取各段落的目标句子,得到各段落的句子摘要集合,再以所述句子摘要集合中的片段为粒度,分别抽取各段落的目标片段,得到各段落的片段摘要集合;S3、去除所述片段摘要集合中的冗余片段,将筛选出的片段按照片段出现的顺序组合,生成文本摘要。以及,基于启发式规则的文本摘要自动生成装置。采用本发明的方法生成的文本摘要的句子组织连贯性好,可读性强。
-
公开(公告)号:CN109960756A
公开(公告)日:2019-07-02
申请号:CN201910207437.5
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/953 , G06F16/34 , G06F16/35 , G06F17/27
Abstract: 本发明公开了一种新闻事件信息归纳方法,包括:收集新闻素材,创建新闻库;从新闻库中获取目标事件的所有新闻文本,并进行热度分析,获取拐点新闻文本,抽取所述拐点新闻文本中的事件信息并保存;其中,获取拐点新闻文本的方法包括:统计所有新闻文本的热度值,按照新闻文本发布的时间顺序排序,构建热度值随时间变化的曲线图,取曲线图的所有极大点对应的新闻文本,即为所述拐点新闻文本,所述热度值为新闻的页面浏览量和网站独立访客量之和。本发明的方法通过选择对于目标新闻事件处于关键节点时的新闻文本——即拐点新闻文本进行摘要分析处理,准确地反映了新闻事件的发展态势。
-
公开(公告)号:CN108763333A
公开(公告)日:2018-11-06
申请号:CN201810445536.2
申请日:2018-05-11
Applicant: 北京航空航天大学 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F17/2795
Abstract: 本发明则提出一种基于社会媒体的事件图谱构建方法,首先进行多源数据预处理,接着对预处理后的数据进行多源事件信息抽取,然后通过事件关系评价对事件间关系进行判定,最后进行实体信息融合,对异构图中的实体进行属性补全。本发明将事件看做抽象实体,基于社会媒体文本数据对抽取事件基本构成要素,事件进行关联,并融合已有结构化知识库构建事件图谱,这样能够提供更全面更直接的面向事件的信息检索服务,还能通过将传统非结构化文本内容的研究转化为基于图的研究,有利于发掘更深层次的信息。
-
公开(公告)号:CN108647318A
公开(公告)日:2018-10-12
申请号:CN201810443980.0
申请日:2018-05-10
Applicant: 北京航空航天大学 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于多源数据的知识融合方法,在融合多个来源的实体数据时,首先分别对每个数据源的属性进行规范化表示,其中包括了同义属性映射和对属性值的数值单位的统一转换,这样对属性的规范化处理可以减少对后续实体比较造成的影响;然后基于实体名和实体属性对实体进行分块聚合,这样仅将同一分块内不同来源的实体作为候选匹配实体对,避免了将两个数据源中所有的实体两两间比较,减少计算复杂度;最后将同一分块内不同来源的实体作为候选实体对,采用实体对齐算法计算实体间的相似度,将匹配得到不同来源中描述同一客观世界的实体对,建立不同数据源之间同一实体的等价链接,并进行实体属性的合并,而对于一个数据源中独有的实体,可以直接添加到知识库中。
-
-
-
-
-
-
-
-
-