-
公开(公告)号:CN112981215B
公开(公告)日:2022-04-12
申请号:CN202110148605.5
申请日:2021-02-02
Applicant: 北京科技大学
IPC: C22C33/04 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/44 , C22C38/48 , C22C38/58 , C21D1/20 , C21D6/00
Abstract: 一种热稳定性良好的含铌纳米贝氏体钢的制备方法,属于钢铁材料领域。将含铌纳米贝氏体钢坯料在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s的速率直接冷却到马氏体开始相变温度(Ms)以上5~15℃进行等温贝氏体转变,等温时间为1.0~2.0h;或直接冷却到马氏体开始相变温度(Ms)以下5~8℃形成少量马氏体,随后升温到马氏体开始相变温度(Ms)以上5~15℃进行二步等温贝氏体转变,等温时间为0.5~1.0h。最后空冷至室温。所述纳米贝氏体钢的化学成分为:C 0.25~0.30%;Si 1.2~1.5%;Mn 1.0~1.7%;Cr 1.2~1.5%;Al 1.5~2.0%;Mo 0.8~1.0%;Ni 0.6~1.0%;Nb 0.015~0.020%,其余为铁及不可避免的杂质。本发明涉及工艺无需复杂的轧制变形,相变完成时间短,在细化纳米贝氏体显微组织的同时还可保证纳米贝氏体钢在高温时的力学稳定性。
-
公开(公告)号:CN112981215A
公开(公告)日:2021-06-18
申请号:CN202110148605.5
申请日:2021-02-02
Applicant: 北京科技大学
IPC: C22C33/04 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/44 , C22C38/48 , C22C38/58 , C21D1/20 , C21D6/00
Abstract: 一种热稳定性良好的含铌纳米贝氏体钢的制备方法,属于钢铁材料领域。将含铌纳米贝氏体钢坯料在完全奥氏体化温度(Ac3)以上50~100℃保温0.5~1.0h;然后以20~50℃/s的速率直接冷却到马氏体开始相变温度(Ms)以上5~15℃进行等温贝氏体转变,等温时间为1.0~2.0h;或直接冷却到马氏体开始相变温度(Ms)以下5~8℃形成少量马氏体,随后升温到马氏体开始相变温度(Ms)以上5~15℃进行二步等温贝氏体转变,等温时间为0.5~1.0h。最后空冷至室温。所述纳米贝氏体钢的化学成分为:C 0.25~0.30%;Si 1.2~1.5%;Mn 1.0~1.7%;Cr 1.2~1.5%;Al 1.5~2.0%;Mo 0.8~1.0%;Ni 0.6~1.0%;Nb 0.015~0.020%,其余为铁及不可避免的杂质。本发明涉及工艺无需复杂的轧制变形,相变完成时间短,在细化纳米贝氏体显微组织的同时还可保证纳米贝氏体钢在高温时的力学稳定性。
-
公开(公告)号:CN116815074B
公开(公告)日:2024-02-09
申请号:CN202310669397.2
申请日:2023-06-07
Applicant: 北京科技大学
IPC: C22C38/58 , C22C38/04 , C22C38/02 , C22C38/06 , C22C38/48 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/50 , C22C38/54 , C21D8/02 , C21D1/18
Abstract: 低温冲击韧性、厚度均匀性和耐大气腐蚀性,利本发明提供一种优异厚度均匀性的高强韧 于工业大规模生产。Q690F特厚耐候钢板及制备方法,涉及高强度合金钢制造的技术领域。所述优异厚度均匀性的高强韧Q690F特厚耐候钢板的厚度为100‑140mm,表层显微组织为准多边形铁素体+回火马氏体+碳化物+M/A岛,1/4和1/2处组织的显微组织变化主要体现在进一步的M/A岛分解、碳化物析出和马氏体/贝氏体板条的粗化合并,沿厚度方向组织均匀性较高。所述制备方法采用差温轧制+亚温淬火+回火的工艺。本发明方法相对于其他传统
-
公开(公告)号:CN115747652A
公开(公告)日:2023-03-07
申请号:CN202211426715.4
申请日:2022-11-15
Applicant: 北京科技大学
Abstract: 本发明公开了一种节镍型LNG储罐用含Nb7Ni超低温钢及其热处理工艺,涉及超低温储能材料制造领域,其中含Nb7Ni超低温钢的化学成分和质量百分数如下:C:0.04%~0.08%,Mn:0.8%~1.1%,Si:0.15%~0.3%,Ni:6.2%~7.6%,Nb:0.02%~0.06%,S≤0.01%,P≤0.001%,其余为Fe和不可避免的杂质元素。本发明通过添加微合金元素Nb的方式实现Ni的减量化,并对高温淬火+两相区淬火+高温回火(QLT)的热处理工艺进行优化,使得回火后逆转变奥氏体的生成量和稳定性与9Ni钢相当,同时具有相近的力学性能,尤其是‑196℃的横向冲击功AKV≥110J,获得低成本的节镍型含Nb7Ni超低温钢,以替代9Ni钢应用于LNG储罐,具有优异的经济适用性。
-
公开(公告)号:CN116732433A
公开(公告)日:2023-09-12
申请号:CN202310624297.8
申请日:2023-05-30
Applicant: 北京科技大学
Abstract: 一种热稳定性良好中碳超细贝氏体钢的制备方法,属于钢铁材料领域。贝氏体钢成分:C 0.15~0.25%;Si 0.8~1.3%;Mn 1.0~1.5%;Cr 0.5~1.5%;Al 1.0~1.5%;Mo 0.5~0.8%;Ni 0.2~0.5%;Nb 0.020~0.030%,其余为铁及不可避免杂质。将坯料在完全奥氏体化温度以上80~120℃保温0.3~0.5h;后以>20℃/s的速度快冷至铁素体转变温度以下10~30℃,保温3~10min;再以>20℃/s的速度快冷至马氏体相变温度以上Ms~Ms+10℃保温0.5~1.5h;最后空冷至室温。本发明生产设备简单、成本低廉、生产周期短,产品的热稳定性能优良。
-
公开(公告)号:CN115747652B
公开(公告)日:2023-06-23
申请号:CN202211426715.4
申请日:2022-11-15
Applicant: 北京科技大学
Abstract: 本发明公开了一种节镍型LNG储罐用含Nb7Ni超低温钢及其热处理工艺,涉及超低温储能材料制造领域,其中含Nb7Ni超低温钢的化学成分和质量百分数如下:C:0.04%~0.08%,Mn:0.8%~1.1%,Si:0.15%~0.3%,Ni:6.2%~7.6%,Nb:0.02%~0.06%,S≤0.01%,P≤0.001%,其余为Fe和不可避免的杂质元素。本发明通过添加微合金元素Nb的方式实现Ni的减量化,并对高温淬火+两相区淬火+高温回火(QLT)的热处理工艺进行优化,使得回火后逆转变奥氏体的生成量和稳定性与9Ni钢相当,同时具有相近的力学性能,尤其是‑196℃的横向冲击功AKV≥110J,获得低成本的节镍型含Nb7Ni超低温钢,以替代9Ni钢应用于LNG储罐,具有优异的经济适用性。
-
公开(公告)号:CN117568723B
公开(公告)日:2024-06-07
申请号:CN202311547384.4
申请日:2023-11-20
Applicant: 北京科技大学
IPC: C22C38/22 , C22C38/02 , C22C38/04 , C22C33/06 , C21C7/064 , C21C7/00 , C21C7/06 , C21C7/068 , C21C7/10
Abstract: 一种海水海砂混凝土用高耐蚀钢筋及其制备方法,属于建筑结构用钢筋制造领域,所述钢筋以质量百分比C≤0.03%,Cr 8.5~11.5%,Mo 0.5~2.0%,Mn 0.8~1.0%,Si 0.2~0.4%,P≤0.006%,S≤0.004%,其余为Fe及杂质;制备步骤包括冶炼、LF‑RH精炼;连铸控轧或热连轧、控温冷却。制备的钢筋能在短时间内达到稳定钝化状态,且具有随时间增加钝化增强的性质。同时,在海水海砂混凝土中仍能保持良好致钝性能,且在混凝土结构不可避免的碳化情况下制备的钢筋钝化能力并未弱化反而显著增强,达到长使用寿命周期的同时能实现整体成本的最小化。在河砂和淡水资源匮乏、近海及深海严苛海洋环境跨海交通基础设施、港口码头、海上石油平台、海上风力发电等海上工程中具有广阔的应用前景。
-
公开(公告)号:CN117568723A
公开(公告)日:2024-02-20
申请号:CN202311547384.4
申请日:2023-11-20
Applicant: 北京科技大学
IPC: C22C38/22 , C22C38/02 , C22C38/04 , C22C33/06 , C21C7/064 , C21C7/00 , C21C7/06 , C21C7/068 , C21C7/10
Abstract: 一种海水海砂混凝土用高耐蚀钢筋及其制备方法,属于建筑结构用钢筋制造领域,所述钢筋以质量百分比C≤0.03%,Cr 8.5~11.5%,Mo 0.5~2.0%,Mn 0.8~1.0%,Si 0.2~0.4%,P≤0.006%,S≤0.004%,其余为Fe及杂质;制备步骤包括冶炼、LF‑RH精炼;连铸控轧或热连轧、控温冷却。制备的钢筋能在短时间内达到稳定钝化状态,且具有随时间增加钝化增强的性质。同时,在海水海砂混凝土中仍能保持良好致钝性能,且在混凝土结构不可避免的碳化情况下制备的钢筋钝化能力并未弱化反而显著增强,达到长使用寿命周期的同时能实现整体成本的最小化。在河砂和淡水资源匮乏、近海及深海严苛海洋环境跨海交通基础设施、港口码头、海上石油平台、海上风力发电等海上工程中具有广阔的应用前景。
-
公开(公告)号:CN116770177A
公开(公告)日:2023-09-19
申请号:CN202310690152.8
申请日:2023-06-12
Applicant: 北京科技大学
Abstract: 本发明提供一种纳米贝氏体结构的低成本高强度耐磨钢及制备方法,涉及金属材料加工的技术领域。所述纳米贝氏体结构的低成本高强度耐磨钢的化学成分以质量百分数计如下:C:0.4‑0.9%,Si:1.3‑2.5%,Mn:0.7‑2.4%,Cr:0.5‑1.4%,Al:0.8‑2.5%,S≤0.01%,P≤0.01%,其余为Fe和不可避免的杂质。所述制备方法包括制备铸锭、锻造成坯、球化退火、等温淬火、检测分析。本发明工艺简单,大大缩短了生产周期,可控性强,效率得以大幅提升,能够协同提高耐磨性、室温冲击韧性和强度,对低成本超高强度耐磨钢的工业生产有重要指导作用。
-
公开(公告)号:CN116752048A
公开(公告)日:2023-09-15
申请号:CN202310690673.3
申请日:2023-06-12
Applicant: 北京科技大学
Abstract: 本发明提供一种强塑积大于90GPa%的超高强韧中锰钢及制备方法,涉及超高强韧汽车钢的技术领域。所述超高强韧中锰钢的化学成分以质量百分数计如下:C:0.2‑0.8%,Mn:2‑8%,Si:1.10‑3.35%,Al:2.00‑4.45%,V+Nb:≤0.12%,S≤0.008%,P≤0.015%,其余为Fe和不可避免的杂质。所述制备方法包括制备铸锭、锻造成坯、高温加热、多道次热轧、一次水冷、多道次温轧、二次水冷、临界退火。本发明采用在线淬火生产的方式大幅度缩短整个生产流程,省略二次淬火,其中的热锻+多道次热轧+多道次温轧+临界退火的工艺,不仅提高了生产效率还节约能源消耗,获得马氏体/铁素体和奥氏体交替排列的层状结构。
-
-
-
-
-
-
-
-
-