基于混合强化学习的车载任务卸载调度方法及系统

    公开(公告)号:CN117793801B

    公开(公告)日:2024-04-23

    申请号:CN202410205872.5

    申请日:2024-02-26

    Abstract: 本发明提供了一种基于混合强化学习的车载任务卸载调度方法及系统,涉及车载任务调度技术领域,方法包括:建立车载任务协同处理网络、状态变量空间和动作变量空间,基于SADDQN网络构建通信决策模型,以确定车辆目标边缘计算节点,基于DDPG网络构建任务分配决策模型,以确定车辆任务卸载率、通信传输功率和分配算力比例;以车载任务协同处理网络的总成本最小为目标,优化得到训练好的通信决策模型和任务分配决策模型,即可根据实时的状态变量空间,输出合理的通信决策和任务分配决策,进行车载任务卸载调度。本发明解决了将车载任务不合理卸载到边缘计算节点上,导致边缘计算节点处理信息量及传递信息量过大,时延过长、能耗较大的问题。

    基于混合强化学习的车载任务卸载调度方法及系统

    公开(公告)号:CN117793801A

    公开(公告)日:2024-03-29

    申请号:CN202410205872.5

    申请日:2024-02-26

    Abstract: 本发明提供了一种基于混合强化学习的车载任务卸载调度方法及系统,涉及车载任务调度技术领域,方法包括:建立车载任务协同处理网络、状态变量空间和动作变量空间,基于SADDQN网络构建通信决策模型,以确定车辆目标边缘计算节点,基于DDPG网络构建任务分配决策模型,以确定车辆任务卸载率、通信传输功率和分配算力比例;以车载任务协同处理网络的总成本最小为目标,优化得到训练好的通信决策模型和任务分配决策模型,即可根据实时的状态变量空间,输出合理的通信决策和任务分配决策,进行车载任务卸载调度。本发明解决了将车载任务不合理卸载到边缘计算节点上,导致边缘计算节点处理信息量及传递信息量过大,时延过长、能耗较大的问题。

Patent Agency Ranking