一种SrTiO <base:Sub>3</base:Sub>与LaAlO <base:Sub>3</base:Sub>双纳米颗粒掺杂YBCO复合薄膜的制备方法

    公开(公告)号:CN106486205B

    公开(公告)日:2017-08-25

    申请号:CN201610875912.2

    申请日:2016-10-03

    Abstract: 一种SrTiO3与LaAlO3双纳米颗粒掺杂YBCO复合薄膜的制备方法,其步骤如下:将前驱液旋涂于基底上,得到附着于基底表面的前驱膜,前驱膜置于通入干燥氧气的石英管式炉内,于室温下以10℃/min的速率升到150℃;再以1.5~3℃/min的速率升到400℃,并保温10min,当温度高于150℃时将干燥的氧气换成潮湿的氧气,水汽含量为3.1%;然后再以5℃/min的速率升至770~840℃,保温2~3h;其中,在400℃至500℃升温过程中,气氛为干燥的Ar/O2气氛;升至550℃时气氛换为潮湿的Ar/O2;保温的最后30min将湿气换回干燥的Ar/O2气氛;保温完毕后,样品随炉冷却。本发明解决外加磁场下薄膜钉扎性有限、无法继续提高载流能力的问题。

    一种LaAlO3掺杂的复合YBCO薄膜的制备方法

    公开(公告)号:CN105272203A

    公开(公告)日:2016-01-27

    申请号:CN201510666992.6

    申请日:2015-10-14

    CPC classification number: Y02E40/64

    Abstract: 一种LaAlO3掺杂的复合YBCO薄膜的制备方法属于高温超导材料制备领域。本发明通过以有机镧盐和铝盐为前驱盐,采用化学溶液方法制备前驱液后,经过旋涂的方法将前驱液涂敷到LAO单晶基板上,再经过热处理工艺在单晶表面复合薄膜,本发明所提供的LAO掺杂的复合薄膜,其掺杂相LAO可与YBCO共格界面,引入钉扎缺陷的同时,保证了YBCO结构不被破坏。本发明制无需外加溶剂,体系简单,经济节约,烧结工艺时间较短,形成LAO相同时保证YBCO的外延生长不被阻碍。本发明所制备的复合薄膜5%LAO掺杂样品自场下Je约为纯YBCO薄膜的3倍,外场下77K,1.5T下约为纯YBCO薄膜的6倍。

    一种双错配多元掺杂的复合YBCO薄膜的制备方法

    公开(公告)号:CN105198401A

    公开(公告)日:2015-12-30

    申请号:CN201510666983.7

    申请日:2015-10-14

    Abstract: 一种双错配多元掺杂的复合YBCO薄膜的制备方法属于高温超导材料制备领域。本发明通过以有机盐为前驱盐,采用化学溶液方法制备前驱液后,经过旋涂的方法将前驱液涂敷到LAO单晶基板上,再经过热处理工艺在单晶表面复合薄膜。本发明的两种掺杂相与YBCO的失配分别正失配和负失配,这使得两相掺杂颗粒引入的应变在局部起到钉扎作用,而在整体上则因相互抵消,从而阻止YBCO因为晶格畸变过大而破坏结构,例如阻止高掺杂量下的膜裂行为。本发明所用烧结工艺时间较短,形成BYNO和LAO相的同时不影响YBCO的取向生长。本发明制备的薄膜载流能力为7.5%BYNO和2.5%LAO单独掺杂样品的4倍和1.7倍,更加有效的提高了薄膜的超导能力。

    一种单一材料ZrO2纳米点、制备方法及应用

    公开(公告)号:CN102173452B

    公开(公告)日:2012-12-26

    申请号:CN201110052214.X

    申请日:2011-03-04

    Abstract: 本发明公开了一种单一材料ZrO2纳米点、制备方法及应用,属于高温超导材料制备技术领域。将乙酰丙酮锆溶解到正丙酸中,得到前驱液;2)涂敷前驱液:将步骤1)制备的前驱液采用旋涂的方式涂敷到单晶基板上,得到前驱膜;3)高温烧结:在通保护气体的条件下,将前驱膜于1000~1300℃烧结100~1000分钟,得到不连续的,高度在5~50nm,直径在30~200nm,颗粒密度在10~80个/μm的ZrO2纳米点。在上述基板上用低氟MOD工艺制备YBCO膜,使得YBCO在这些岛状颗粒附近形核时由于晶格上的匹配差从而产生一些缺陷,以此作为钉扎中心来提高外加磁场下YBCO薄膜的超导性能。

    一种二元材料(Zr,Ce)O2纳米点、制备方法及应用

    公开(公告)号:CN102180703A

    公开(公告)日:2011-09-14

    申请号:CN201110052460.5

    申请日:2011-03-04

    Abstract: 本发明公开了一种二元材料(Zr,Ce)O2纳米点、制备方法及应用,属于高温超导材料技术领域。制备方法:将乙酰丙酮锆和乙酰丙酮铈按锆与铈摩尔比为1-x∶x溶解到正丙酸中,得到前驱液;将前驱液涂敷到单晶基板上,得到前驱膜;在保护气体下,将前驱膜于950~1200℃烧结10~500分钟,得到不连续的、高度在5~60nm、直径在20~150nm、颗粒密度在10~100个/μm的Ce掺杂的ZrO2纳米点。在上述涂有纳米点的过渡层基板上用低氟MOD工艺制备YBCO膜,来提高外加磁场下YBCO薄膜的超导性能。本发明引入的纳米点的形态,数目及分布可简单、有效控制。

    一种单一材料ZrO2纳米点、制备方法及应用

    公开(公告)号:CN102173452A

    公开(公告)日:2011-09-07

    申请号:CN201110052214.X

    申请日:2011-03-04

    Abstract: 本发明公开了一种单一材料ZrO2纳米点、制备方法及应用,属于高温超导材料制备技术领域。将乙酰丙酮锆溶解到正丙酸中,得到前驱液;2)涂敷前驱液:将步骤1)制备的前驱液采用旋涂的方式涂敷到单晶基板上,得到前驱膜;3)高温烧结:在通保护气体的条件下,将前驱膜于1000~1300℃烧结100~1000分钟,得到不连续的,高度在5~50nm,直径在30~200nm,颗粒密度在10~80个/μm的ZrO2纳米点。在上述基板上用低氟MOD工艺制备YBCO膜,使得YBCO在这些岛状颗粒附近形核时由于晶格上的匹配差从而产生一些缺陷,以此作为钉扎中心来提高外加磁场下YBCO薄膜的超导性能。

    一种双错配多元掺杂的复合YBCO薄膜的制备方法

    公开(公告)号:CN105198401B

    公开(公告)日:2017-05-17

    申请号:CN201510666983.7

    申请日:2015-10-14

    Abstract: 一种双错配多元掺杂的复合YBCO薄膜的制备方法属于高温超导材料制备领域。本发明通过以有机盐为前驱盐,采用化学溶液方法制备前驱液后,经过旋涂的方法将前驱液涂敷到LAO单晶基板上,再经过热处理工艺在单晶表面复合薄膜。本发明的两种掺杂相与YBCO的失配分别正失配和负失配,这使得两相掺杂颗粒引入的应变在局部起到钉扎作用,而在整体上则因相互抵消,从而阻止YBCO因为晶格畸变过大而破坏结构,例如阻止高掺杂量下的膜裂行为。本发明所用烧结工艺时间较短,形成BYNO和LAO相的同时不影响YBCO的取向生长。本发明制备的薄膜载流能力为7.5%BYNO和2.5%LAO单独掺杂样品的4倍和1.7倍,更加有效的提高了薄膜的超导能力。

    一种SrTiO3与LaAlO3双纳米颗粒掺杂YBCO复合薄膜的制备方法

    公开(公告)号:CN106486205A

    公开(公告)日:2017-03-08

    申请号:CN201610875912.2

    申请日:2016-10-03

    CPC classification number: H01B12/02 H01B13/00

    Abstract: 一种SrTiO3与LaAlO3双纳米颗粒掺杂YBCO复合薄膜的制备方法,其步骤如下:将前驱液旋涂于基底上,得到附着于基底表面的前驱膜,前驱膜置于通入干燥氧气的石英管式炉内,于室温下以10℃/min的速率升到150℃;再以1.5~3℃/min的速率升到400℃,并保温10min,当温度高于150℃时将干燥的氧气换成潮湿的氧气,水汽含量为3.1%;然后再以5℃/min的速率升至770~840℃,保温2~3h;其中,在400℃至500℃升温过程中,气氛为干燥的Ar/O2气氛;升至550℃时气氛换为潮湿的Ar/O2;保温的最后30min将湿气换回干燥的Ar/O2气氛;保温完毕后,样品随炉冷却。本发明解决外加磁场下薄膜钉扎性有限、无法继续提高载流能力的问题。

    一种La2Zr2O7过渡层梯度薄膜结构、制备及应用

    公开(公告)号:CN103922738A

    公开(公告)日:2014-07-16

    申请号:CN201410088329.8

    申请日:2014-03-11

    Abstract: 一种La2Zr2O7过渡层梯度薄膜结构、制备及应用,属于高温超导涂层材料技术领域。本发明所提供的La2Zr2O7过渡层薄膜,下层为离子半径较小的Ti4+掺杂形成的La2Zr2-xTixO7薄膜,其中0.2≤x≤1.8,上层是离子半径较大的Y3+掺杂形成的La2Zr2-yYyO7薄膜,其中0.2≤y≤1.8,通过不同掺杂量实现与基板Ni、超导层YBCO的100%匹配,实现了晶格常数梯度变化的过渡层结构。且过渡层为同一本体材料,性能更稳定。La2Zr2-xTixO7、La2Zr2-yYyO7薄膜晶格常数精确可调,且能实现多种过渡层功能的一体化,减小了现有过渡层结构的复杂性。

Patent Agency Ranking