-
公开(公告)号:CN111132181B
公开(公告)日:2020-07-21
申请号:CN202010226247.0
申请日:2020-03-27
Applicant: 北京中铁建电气化设计研究院有限公司 , 北京交通大学 , 中国铁建电气化局集团有限公司
Abstract: 本发明实施例涉及一种应用于无线通信网络的射线跟踪技术方法、装置、电子设备及计算机可读存储介质,方法包括:从高铁建筑信息模型中提取目标高铁铁路信息,以及从地理信息系统中提取目标高铁环境信息,基于所述目标高铁铁路信息和所述目标高铁环境信息,确定高铁射线跟踪应用场景,然后基于所述高铁射线跟踪应用场景,利用射线跟踪仿真器,确定高铁无线通信网络信道信息。本发明实施例中,利用高精度的建筑信息模型和地理信息系统精确地描述铁路场景中的铁轨、路堑、高架桥等环境信息,通过高铁场景射线跟踪仿真器,为无线通信网络规划和优化提供精准的高铁无线通信网络信道信息。
-
公开(公告)号:CN111162847A
公开(公告)日:2020-05-15
申请号:CN202010252694.3
申请日:2020-04-02
Applicant: 北京中铁建电气化设计研究院有限公司 , 北京交通大学 , 中国铁建电气化局集团有限公司
Abstract: 本发明实施例涉及一种高铁网络定向天线的对准方法、装置、电子设备及计算机可读存储介质,方法包括:获取目标高铁场景中基站的位置信息和高度信息,以及目标高铁经纬度信息,基于目标高铁场景中基站的位置信息和高度信息,以及目标高铁经纬度信息,确定第一基站的位置信息,获取目标高铁场景中的结构体的电磁参数信息,基于第一基站的位置信息和所述目标高铁场景中的结构体的电磁参数信息,确定电波传播角度信息。本发明实施例中,通过获取高铁场景中基站的位置信息和高度信息,根据射线跟踪仿真技术,确定电波传播角度信息,找到损耗最小的传输路径,将天线方向对准该路径,实现无线网络的稳定连接。
-
公开(公告)号:CN111132181A
公开(公告)日:2020-05-08
申请号:CN202010226247.0
申请日:2020-03-27
Applicant: 北京中铁建电气化设计研究院有限公司 , 北京交通大学 , 中国铁建电气化局集团有限公司
Abstract: 本发明实施例涉及一种应用于无线通信网络的射线跟踪技术方法、装置、电子设备及计算机可读存储介质,方法包括:从高铁建筑信息模型中提取目标高铁铁路信息,以及从地理信息系统中提取目标高铁环境信息,基于所述目标高铁铁路信息和所述目标高铁环境信息,确定高铁射线跟踪应用场景,然后基于所述高铁射线跟踪应用场景,利用射线跟踪仿真器,确定高铁无线通信网络信道信息。本发明实施例中,利用高精度的建筑信息模型和地理信息系统精确地描述铁路场景中的铁轨、路堑、高架桥等环境信息,通过高铁场景射线跟踪仿真器,为无线通信网络规划和优化提供精准的高铁无线通信网络信道信息。
-
公开(公告)号:CN102774294A
公开(公告)日:2012-11-14
申请号:CN201210253259.8
申请日:2012-07-20
Applicant: 北京千驷驭电气有限公司 , 北京交通大学
Abstract: 本发明提供一种基于串联补偿变压器的能馈式牵引供电装置,包括移相变压器、二极管整流机组和PWM整流机组,还包括串联补偿变压器;移相变压器的数量为一个;移相变压器的原边三相绕组用于与交流电源连接,移相变压器的两个副边三相绕组与二极管整流机组的交流侧连接,移相变压器的两个副边三相绕组还与串联补偿变压器的原边三相绕组连接,串联补偿变压器的副边三相绕组与PWM整流机组的交流侧连接,串联补偿变压器用于调整PWM整流机组的输入电压,以使PWM整流机组与二极管整流机组的输出电压相等。本发明可以减少移相变压器的数量,降低能馈式牵引供电装置的成本,并且能够减小安装空间。
-
公开(公告)号:CN118309436A
公开(公告)日:2024-07-09
申请号:CN202410440155.0
申请日:2024-04-12
Applicant: 中铁十四局集团大盾构工程有限公司 , 北京交通大学 , 中铁第四勘察设计院集团有限公司 , 中铁十四局集团有限公司
Abstract: 本发明涉及盾构机检查维护技术领域,特别涉及一种盾构带压开舱高稳定性实施工艺,该盾构带压开舱高稳定性实施工艺采用如下盾构带压开舱高稳定性实施装置,该盾构带压开舱高稳定性实施装置包括循环置换单元和检测单元;本发明能够解决现有技术对泥浆进行置换过程中存在的以下问题:置换时掘进泥浆容易与注入泥浆混合并掺入渗透带,导致泥膜硬度较差,且降压或升压的过程中容易导致泥膜破坏,影响压力舱的密封性、稳定性和安全性;本发明通过由下到上置换的方式可以有效的将低质量泥浆置换,且采用指定比重和粘度的泥浆分两次进行6小时循环置换,以此有效的将泥浆完全置换,从而确保泥膜的硬度以及开挖舱的密封性和稳定性。
-
公开(公告)号:CN118196512A
公开(公告)日:2024-06-14
申请号:CN202410343643.X
申请日:2024-03-25
Applicant: 北京交通大学
IPC: G06V10/764 , G06T5/00 , G06V10/80 , G06V10/82
Abstract: 本发明提供了一种面向多种退化类型的低质量图像分类方法。该方法包括:利用图像复原模块对待分类的低质量图像进行复原,得到复原图像;使用基于Prompt的特征融合模块对低质量图像中的特征和复原图像中的特征进行融合,得到融合输出特征;构建包括教师分支模型和学生分支模型的双分支分类网络,通过教师分支模型对清晰图像进行分类,获取清晰图像的类别标签,将融合输出特征输入到学生分支模型中,学生分支模型根据清晰图像的信息软标签通过类别一致性损失函数对低质量图像进行分类。本发明通过联合图像复原与分类模块,添加了Prompt特征融合模块减少错误的复原对于分类任务的干扰,充分利用清晰图像特征引导,提升多种退化类型的低质量图像的分类准确率。
-
公开(公告)号:CN110624588B
公开(公告)日:2021-05-04
申请号:CN201910899432.3
申请日:2019-09-23
Applicant: 北京交通大学
IPC: B01J27/24 , C02F1/30 , C02F101/30 , C02F101/38
Abstract: 本发明提供了一种D‑g‑C3N4可见光催化材料的制备方法及应用,包括:步骤1、将过硫酸铵与三聚氰胺、尿素、硫脲中的一种进行按质量比为0.75:3~2:3进行混合,混合后研磨均匀得到混合物;步骤2、将所述混合物放入马弗炉中,加热至500‑650℃并保持两小时,自然冷却后研磨得到D‑g‑C3N4。本发明的D‑g‑C3N4可以有效地抑制电子‑空穴对的复合,具有较高的催化效率,比普通g‑C3N4的催化效率提高3‑4倍。
-
公开(公告)号:CN110560125B
公开(公告)日:2020-10-27
申请号:CN201910841017.2
申请日:2019-09-06
Applicant: 北京交通大学
Abstract: 本发明提供了一种N‑g‑C3N4可见光催化材料制备方法及应用,包括:(1)将富氮前驱体和三聚氰胺以质量比为0.05:3~0.5:3混合,混合后充分研磨均匀得到混合物;(2)将研磨均匀的所述混合物放入马弗炉中,升温至500℃并恒温煅烧两小时,自然冷却后将煅烧产物研磨得到N‑g‑C3N4。通过本发明方法得到的N‑g‑C3N4降解染料废水和抗生素废水具有较高的催化效率,比传统的g‑C3N4的催化效率提高3‑4倍。
-
公开(公告)号:CN111416676A
公开(公告)日:2020-07-14
申请号:CN202010208705.8
申请日:2020-03-23
Applicant: 北京中铁建电气化设计研究院有限公司 , 北京交通大学 , 中国铁建电气化局集团有限公司
IPC: H04B17/373 , H04B17/318 , H04B17/391 , H04W16/18 , H04W16/22
Abstract: 本发明实施例涉及一种基于射线跟踪的高铁铁路交叉并线区段场强预测方法及装置,方法包括:测量目标高铁铁路交叉并线区段场景中每个位置测量点的三维坐标信息、每个位置测量点的接收场强实际值、每个基站的三维坐标信息以及天线角度信息,通过射线跟踪仿真针对场景中每个位置测量点进行场强预测,结合每个位置测量点的接收场强实际值,对射线跟踪仿真器进行校正,然后调整场景中基站的三维坐标信息和天线角度信息,实现接收场强预测。本发明实施例中,实现接收场强预测。将射线跟踪技术融入到高速铁路交叉并线区段GSM-R网络规划中,可以实现在不同基站参数配置下对高速铁路交叉并线区段信道的精确仿真,获得高铁铁路交叉并线区段的精准场强预测。
-
公开(公告)号:CN110933685B
公开(公告)日:2020-06-05
申请号:CN202010072957.2
申请日:2020-01-22
Applicant: 北京中铁建电气化设计研究院有限公司 , 北京交通大学 , 中国铁建电气化局集团有限公司
Abstract: 本发明实施例涉及一种基于机器学习和射线跟踪的高铁网络覆盖预测方法及装置,方法包括:获取目标高铁场景的三维电子地图;基于目标高铁场景的三维电子地图,使用射线跟踪仿真计算目标高铁场景中每个位置测量点的初步预测值;基于相同目标高铁场景下每个位置测量点的实际测量值,结合每个位置测量点的初步预测值,通过机器学习对初步预测值进行校正,获取初步预测值的校正因子;根据初步预测值的校正因子,使用射线跟踪仿真进行高铁场景接收场强预测。本发明实施例中,利用射线跟踪仿真技术和深度强化机器学习,为场景校正提供更加精确的输入依据,应用部署范围更普适,鲁棒性更高。
-
-
-
-
-
-
-
-
-