一种面向实体对齐的主动学习方法、装置和电子装置

    公开(公告)号:CN117407689B

    公开(公告)日:2024-04-19

    申请号:CN202311720957.9

    申请日:2023-12-14

    Abstract: 本申请涉及一种面向实体对齐的主动学习方法、装置和电子装置,该方法包括:基于预设的主动学习规则,并根据知识图谱中的第一实体对,获取知识图谱中与第一实体对的特征关系满足预设条件的第二实体对;其中,第一实体对为进行实体对齐后得到的实体对;根据第一实体对和第二实体对,训练预设的图神经网络模型,并基于主动学习规则得到第三实体对,根据第三实体对更新第二实体对;当第三实体对的数量为预设的实体对数量阈值时,确定得到目标图神经网络模型。通过主动学习的方法,得到标注的实体对,进而使用标注实体对训练图神经网络模型,进而降低了在多模态知识图谱实体对齐过程中的标注成本,同时保证了实体对齐的准确性。

    地理热点中心识别方法、装置、计算机设备和存储介质

    公开(公告)号:CN117251650A

    公开(公告)日:2023-12-19

    申请号:CN202311547326.1

    申请日:2023-11-20

    Abstract: 本申请涉及一种地理热点中心识别方法、装置、计算机设备和存储介质。所述方法包括:获取网络热点文本数据,所述网络热点文本数据包括未标注样本,将所述未标注样本输入初始标注模型,得到标注地理名称标签的训练样本,将所述标注地理名称标签的训练样本输入初始焦点识别模型,通过设定焦点判定规则,将所述训练样本中符合规则要求的位置信息赋予焦点属性,得到初始地理热点中心,基于所述初始地理热点中心和标准样本集训练所述初始标注模型和初始焦点识别模型,得到目标地理热点中心识别模型,将待识别网络热点文本输入目标地理热点中心识别模型,得到目标地理热点中心,提高了自然灾害地理热点中心识别的准确率。

    地理热点中心识别方法、装置、计算机设备和存储介质

    公开(公告)号:CN117251650B

    公开(公告)日:2024-02-06

    申请号:CN202311547326.1

    申请日:2023-11-20

    Abstract: 本申请涉及一种地理热点中心识别方法、装置、计算机设备和存储介质。所述方法包括:获取网络热点文本数据,所述网络热点文本数据包括未标注样本,将所述未标注样本输入初始标注模型,得到标注地理名称标签的训练样本,将所述标注地理名称标签的训练样本输入初始焦点识别模型,通过设定焦点判定规则,将所述训练样本中符合规则要求的位置信息赋予焦点属性,得到初始地理热点中心,基于所述初始地理热点中心和标准样本集训练所述初始标注模型和初始焦点识别模型,得到目标地理热点中心识别模(56)对比文件WO 2022142123 A1,2022.07.07杨宗亮 等.一种基于地理空间大数据的网络舆情监测软件架构.测绘通报.2017,(第03期),96-100.曾依灵 等.网络热点信息发现研究.通信学报.2007,第28卷(第12期),141-146.王诗童 等.基于LDA模型和聚类算法的城市热点推荐与应用《.智能计算机与应用》.2018,第8卷(第3期),136-139.葛小三 等.数据挖掘支持下的网络热点事件地理可视化研究.河南理工大学学报(自然科学版).2016,第35卷(第05期),655-659.

    基于值分布的多智能体协同控制方法、装置、设备和介质

    公开(公告)号:CN118627535A

    公开(公告)日:2024-09-10

    申请号:CN202410879988.7

    申请日:2024-07-02

    Abstract: 本申请涉及一种基于值分布的多智能体协同控制方法、装置、设备和介质,方法包括:构建每个智能体的初始价值网络和多个智能体的初始分布混合网络;基于各智能体的采样数据,对初始分布混合网络和各智能体的价值网络进行训练,通过最小化全局价值分布的损失函数优化初始分布混合网络以及各智能体的价值网络的网络参数,并满足全局价值分布的期望最大、每个智能体的确定性价值最大的约束关系,得到训练好的各智能体的价值网络;根据自身的观测及训练好的价值网络,各智能体执行各自的最优动作。本申请通过在训练过程中综合考虑全局观测、在执行过程中智能体仅利用局部观测做出最优决策方法。

    基于值分布的多智能体协同控制方法、装置、设备和介质

    公开(公告)号:CN117574949A

    公开(公告)日:2024-02-20

    申请号:CN202410067319.X

    申请日:2024-01-17

    Abstract: 本申请涉及一种基于值分布的多智能体协同控制方法、装置、设备和介质,基于值分布的多智能体协同控制方法包括:构建每个智能体的初始价值网络和多个智能体的初始分布混合网络;基于各所述智能体的采样数据,对所述初始分布混合网络和各所述智能体的初始价值网络进行训练,通过最小化所述全局价值分布的损失函数优化所述分布混合网络以及各所述智能体的价值网络的网络参数,并满足全局价值分布的期望最大、每个智能体的确定性价值最大的约束关系,得到训练好的各所述智能体的价值网络;根据自身的观测及训练好的价值网络,各所述智能体执行各自的所述最优动作,扩展了神经网络表达能力,提高多智能体系统更高效的决策和合作,提升整体性能和效果。

    无人机集群路径规划方法、装置和存储介质

    公开(公告)号:CN117826867A

    公开(公告)日:2024-04-05

    申请号:CN202410240296.8

    申请日:2024-03-04

    Abstract: 本申请涉及一种无人机集群路径规划方法、装置和存储介质,其中,该无人机集群路径规划方法包括:通过根据预设的连续课程学习框架确定各无人机的任务成功范围;在任务成功范围内,根据各无人机获取到的局部观测状态信息和各无人机的自身性能约束信息,对应用于无人机的无人机集群路径规划模型进行训练;根据各无人机的存活状态或预设的训练时间确定训练是否结束;若是,则输出最后训练得到的目标无人机集群路径规划模型;根据目标无人机集群路径规划模型输出待规划的各无人机实际航行路径。提高了无人机自主学习课和应对复杂的三维环境的能力,提高了路径规划的准确性。

    智能体路径规划方法、装置、电子装置和存储介质

    公开(公告)号:CN117519160A

    公开(公告)日:2024-02-06

    申请号:CN202311521734.X

    申请日:2023-11-15

    Abstract: 本申请涉及一种智能体路径规划方法、装置、电子装置和存储介质,其中,该智能体路径规划方法包括:针对目标动态环境构建实时路径规划器;根据实时路径规划器,构建强化学习模型;根据强化学习模型搭建深度强化学习算法的神经网络结构;根据奖励函数和预设的仿真环境对深度强化学习算法的神经网络结构进行训练,得到训练完备的目标深度强化学习算法的神经网络结构;通过目标深度强化学习算法的神经网络结构,对实时路径规划器的输入进行处理,得到针对智能体的移动控制指令。解决了在未知动态环境中智能体因其学习能力较低,导致避障准确度和效率均较低的问题,提高了智能体避障的准确度和效率。

    一种面向实体对齐的主动学习方法、装置和电子装置

    公开(公告)号:CN117407689A

    公开(公告)日:2024-01-16

    申请号:CN202311720957.9

    申请日:2023-12-14

    Abstract: 本申请涉及一种面向实体对齐的主动学习方法、装置和电子装置,该方法包括:基于预设的主动学习规则,并根据知识图谱中的第一实体对,获取知识图谱中与第一实体对的特征关系满足预设条件的第二实体对;其中,第一实体对为进行实体对齐后得到的实体对;根据第一实体对和第二实体对,训练预设的图神经网络模型,并基于主动学习规则得到第三实体对,根据第三实体对更新第二实体对;当第三实体对的数量为预设的实体对数量阈值时,确定得到目标图神经网络模型。通过主动学习的方法,得到标注的实体对,进而使用标注实体对训练图神经网络模型,进而降低了在多模态知识图谱实体对齐过程中的标注成本,同时保证了实体对齐的准确性。

    无人机集群路径规划方法、装置和存储介质

    公开(公告)号:CN117826867B

    公开(公告)日:2024-06-11

    申请号:CN202410240296.8

    申请日:2024-03-04

    Abstract: 本申请涉及一种无人机集群路径规划方法、装置和存储介质,其中,该无人机集群路径规划方法包括:通过根据预设的连续课程学习框架确定各无人机的任务成功范围;在任务成功范围内,根据各无人机获取到的局部观测状态信息和各无人机的自身性能约束信息,对应用于无人机的无人机集群路径规划模型进行训练;根据各无人机的存活状态或预设的训练时间确定训练是否结束;若是,则输出最后训练得到的目标无人机集群路径规划模型;根据目标无人机集群路径规划模型输出待规划的各无人机实际航行路径。提高了无人机自主学习课和应对复杂的三维环境的能力,提高了路径规划的准确性。

Patent Agency Ranking