-
公开(公告)号:CN117923488A
公开(公告)日:2024-04-26
申请号:CN202311600239.8
申请日:2023-11-28
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
IPC: C01B32/348 , C01B32/336 , C01B32/354
Abstract: 本发明提供了一种车用活性炭及其制备方法,所述车用活性炭制备原料包括物理活化后的基体材料和碱金属复合盐;所述碱金属复合盐包括碱金属氯盐、碱金属磷盐或碱金属硼盐中的任意两种或三种的组合;所述车用活性炭中金属离子与基体材料的质量比为(0.5~5):100。本发明提供的制备方法采用流化床结合物理活化,在850~1100℃下,复合盐熔化形成了熔盐,剧烈的颗粒运动加强了复合熔盐的扩散,从而促进了熔盐的均匀分散,因此可在较固定床更低的活化温度、更短的活化时间内得到车用活性炭。
-
公开(公告)号:CN117658135A
公开(公告)日:2024-03-08
申请号:CN202311632567.6
申请日:2023-12-01
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
IPC: C01B32/348 , C01B32/342 , C01B32/318 , F02M25/08
Abstract: 本发明提供了一种车用活性炭材料及其制备方法与应用,所述制备方法包括如下步骤:将多羟基酚类化合物、多元醛类化合物、第一催化剂、高分子表面活性剂、金属盐和第二催化剂混合反应,得到反应产物;将所得反应产物依次进行固液分离、成型、冷冻和热解,得到所述活性炭材料。本发明提供的制备方法成本低廉,且避免了传统活性炭原料基本性质不可控的缺点;制备过程直接成型再活化,解决传统活性炭成型过程添加粘结剂带来的堵孔效应;精准控制活性炭材料的孔径分布,提升活性炭材料的吸脱附效果;引入储热介质,合理利用吸脱附热效应,提高活性炭材料的吸附容量。
-
公开(公告)号:CN117282401A
公开(公告)日:2023-12-26
申请号:CN202311511070.9
申请日:2023-11-14
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
Abstract: 本发明提供了一种活性碳颗粒及其制备方法和应用,所述制备方法包括以下步骤:(1)将低熔点金属分散在溶剂中,进行超声,得到纳米金属颗粒;(2)混合配体和步骤(1)所述纳米金属颗粒,进行搅拌,得到表面改性相变纳米金属;(3)将活性碳粉、粘结剂和步骤(2)所述表面改性相变纳米金属分散在水中,依次进行成型和干燥,得到所述活性碳颗粒。将表面改性相变纳米金属在活性碳粉成型过程中加入,表面改性微纳米金属颗粒通过相变调控吸附‑脱附过程中体系热效应,从而提升材料整体的吸脱附性能,且所述表面改性相变纳米金属具有稳定表面并均匀分散于活性碳材料结构内部等特性。
-
公开(公告)号:CN117358201A
公开(公告)日:2024-01-09
申请号:CN202311600240.0
申请日:2023-11-28
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
Abstract: 本发明提供一种吸附材料及其制备方法与应用。所述吸附材料的包括活性炭和添加材料;所述添加材料的比热容和导热系数不低于所述活性炭的比热容和导热系数;所述添加材料包括一维纤维材料和/或二维层状材料;所述活性炭和添加材料的质量比为100:(0.1~10)。本发明提供的吸附材料中的添加材料能够形成导热通路和均匀的储热/释热网络,将活性炭包围在其中,可以在不影响活性炭吸附性能的前提下,既增强了对油气的脱附性能,降低了残留量,又提高了材料的机械性能。
-
公开(公告)号:CN117550604A
公开(公告)日:2024-02-13
申请号:CN202311600244.9
申请日:2023-11-28
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
IPC: C01B32/348 , C01B32/336 , C01B32/354 , C01B32/318 , C01B32/366
Abstract: 本发明提供了一种车用活性炭,所述车用活性炭的制备原料包括高碳物质和碱金属复合盐;所述高碳物质的含碳量≥80%;所述碱金属复合盐包括碱金属氯盐、碱金属磷盐和碱金属硼盐中的任意两种或三种的组合;所述车用活性炭中金属离子与高碳物质的质量比为(0.5~5):100。所述制备方法包括:采用高碳物质和碱金属复合盐结合物理活化,随后清洗成型,可得到车用活性炭。通过对不同功能性的碱金属盐进行复配和活化工艺调控,可实现对活性炭比表面积、孔容以及孔径分布的定向设计,从而达到车用炭的性能要求。
-
公开(公告)号:CN117531481A
公开(公告)日:2024-02-09
申请号:CN202311632564.2
申请日:2023-12-01
Applicant: 中国科学院过程工程研究所 , 中国环境科学研究院
Abstract: 本发明提供了一种基于废碳资源化利用的碳硅材料及制备方法与应用,所述制备方法包括如下步骤:将废碳与水玻璃混合先进行加热预处理,然后进行活化。本发明提供的制备方法将废弃活性炭及PET材料等废碳材料进行资源化利用,利用水玻璃的碱性,采用微孔扩孔、大孔堵孔的策略,有效地将废碳中的微孔再活化扩孔,同时,水玻璃高温分解产生游离的SiO2,可以对大孔进行堵孔,所得碳硅复合材料的孔径分布窄,用于车用碳罐的汽油吸附效果好,工作容量大,结构稳定,且吸脱附速度快。
-
公开(公告)号:CN116920853A
公开(公告)日:2023-10-24
申请号:CN202210337005.8
申请日:2022-03-31
Applicant: 中国科学院过程工程研究所
IPC: B01J23/80 , B01J23/83 , B01J23/889 , B01J35/10 , B01J37/08 , C02F1/72 , C02F101/30 , C02F103/38
Abstract: 本发明提供了一种湿式氧化催化剂及其制备方法与应用,所述湿式氧化催化剂包括生物炭基载体、第一金属和第二金属;生物炭基载体的原料包括中药渣和/或植物提取残渣,第一金属包括Fe和/或Cu,第二金属包括Mn和/或Ce;本发明使用中药渣为生物炭基载体原料,依次通过浸渍和自热解活化负载了第一金属和第二金属,中药渣来源广泛,价格低廉,将其制备为催化剂可实现废弃物资源再生利用,同时用于废水处理中,能够使ABS废水中有机污染物的碳碳键、碳氮键、碳氧键等发生断裂,降解为小分子的物质,实现了以废治废。
-
公开(公告)号:CN104107702B
公开(公告)日:2017-02-08
申请号:CN201410321871.3
申请日:2014-07-07
Applicant: 中国科学院过程工程研究所
CPC classification number: B01J23/835 , B01J23/85 , B01J23/89 , B01J37/08
Abstract: 本发明涉及一种整体式金属基催化剂、制备方法及其用途。本发明采用火焰喷雾热解沉积方法,以Fe-Cr-Al合金网或者Fe-Cr-Al合金片为载体,一步沉积Al2O3及贵金属活性组分,其中贵金属活性组分为,其占Al2O3的质量分数为0.1~10%。本发明采用火焰喷雾热解沉积方法将Al2O3及贵金属活性组分一步沉积在载体上,Al2O3及贵金属活性组分在载体上的薄层厚度均匀,极大地降低了贵金属活性组分用量,降低了催化剂的制造成本。同时采用火焰喷雾热解沉积的方法,加强了Al2O3及贵金属活性组分与金属基载体之间的结合强度,在提高催化剂的抗热震性的同时,使催化剂具有良好的催化活性及稳定性。
-
公开(公告)号:CN104174411B
公开(公告)日:2016-06-29
申请号:CN201410320013.7
申请日:2014-07-07
Applicant: 中国科学院过程工程研究所
CPC classification number: B01D53/72 , B01D53/86 , B01J23/44 , B01J23/50 , B01J23/52 , B01J23/62 , B01J23/89 , B01J23/96
Abstract: 本文涉及一种提高VOCs催化剂催化氧化活性的方法,采用火焰喷雾热解法制备的合金催化剂经过高温还原及酸刻蚀等步骤,以显著提高催化剂催化氧化活性。本发明涉及的催化剂载体是不被酸所溶解的氧化物或者单质,活性组分为Pt或/和Au与至少一种可被酸所溶解的金属所形成的合金。可被酸所溶解的金属在酸刻蚀过程中,可部分或者完全被刻蚀掉。由于刻蚀后合金的多孔结构,增大了活性组分与反应物的接触面积,强化了传质过程,从而提高催化剂催化氧化活性。本发明涉及的提高负载型催化剂活性的方法工艺简单,过程连续、可控,易实现规模化生产。
-
公开(公告)号:CN113083280B
公开(公告)日:2022-05-13
申请号:CN202110436832.8
申请日:2021-04-22
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种催化氧化VOCs的高负载钒‑氧化钛催化剂及其制备方法与用途。本发明所述催化剂包括载体和活性组分,所述催化剂载体为锐钛矿晶型的氧化钛,所述活性组分包括五氧化二钒。本发明所述制备方法如下所述:将制备得到的具有较高比表面积的MOF模板浸渍在可溶性钒源溶液中,依次进行蒸发、焙烧后得到催化氧化VOCs的高负载钒‑氧化钛催化剂。本发明所述催化剂中活性组分的负载量可以达到10‑50wt%,具有较高的催化活性,分解ClVOCs反应温度在220‑265℃之间,具有较好的应用前景。
-
-
-
-
-
-
-
-
-