-
公开(公告)号:CN114998411B
公开(公告)日:2024-01-09
申请号:CN202210475411.0
申请日:2022-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种结合时空增强光度损失的自监督单目深度估计方法和装置,其中,方法包括:获取图像序列中相邻的若干帧图像;将所述图像输入至训练好的深度学习网络中得到深度信息和位姿信息,其中,所述深度学习网络的光度损失信息基于深度感知像素对应关系的空间变换模型得到,并利用全向自动掩膜来避免运动(56)对比文件詹雁.基于域适应的图像深度信息估计方法研究《.中国优秀硕士学位论文全文数据库信息科技辑》.2021,(第2021(04)期),I138-811.
-
公开(公告)号:CN116681759A
公开(公告)日:2023-09-01
申请号:CN202310419746.5
申请日:2023-04-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于自监督视觉惯性里程计的相机位姿估计方法,包括:获取多帧图像以及每两帧图像之间的IMU数据;将所述多帧图像和IMU数据输入至网络模型中,得到位姿变换信息和深度信息;其中,所述网络模型基于视惯融合里程计网络构建,在所述视惯融合里程计网络的IMU网络模块前增加基于自注意力机制尺度恢复模块;所述自注意力机制尺度恢复模块用于估计尺度信息。本发明能够提高里程计的准确性。
-
公开(公告)号:CN116681759B
公开(公告)日:2024-02-23
申请号:CN202310419746.5
申请日:2023-04-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于自监督视觉惯性里程计的相机位姿估计方法,包括:获取多帧图像以及每两帧图像之间的IMU数据;将所述多帧图像和IMU数据输入至网络模型中,得到位姿变换信息和深度信息;其中,所述网络模型基于视惯融合里程计网络构建,在所述视惯融合里程计网络的IMU网络模块前增加基于自注意力机制尺度恢复模块;所述自注意力机制尺度恢复模块用于估计尺度信息。本发明能够提高里程计的准确性。
-
公开(公告)号:CN114998411A
公开(公告)日:2022-09-02
申请号:CN202210475411.0
申请日:2022-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种结合时空增强光度损失的自监督单目深度估计方法和装置,其中,方法包括:获取图像序列中相邻的若干帧图像;将所述图像输入至训练好的深度学习网络中得到深度信息和位姿信息,其中,所述深度学习网络的光度损失信息基于深度感知像素对应关系的空间变换模型得到,并利用全向自动掩膜来避免运动物体的像素参与光度误差的计算。本发明能够提高光度损失的准确性,进而更好的监督深度网络的学习。
-
-
-