一种液态燃料熔盐堆的反应性控制方法

    公开(公告)号:CN112151197B

    公开(公告)日:2022-09-16

    申请号:CN202011075666.5

    申请日:2020-09-27

    Abstract: 本发明公开了一种液态燃料熔盐堆的反应性控制方法。所述液态燃料熔盐堆包括堆芯筒体、燃料盐和石墨球;所述燃料盐填充于所述堆芯筒体中;所述石墨球浮于燃料盐中;通过调节所述石墨球的量控制所述液态燃料熔盐堆的反应性,所述液态燃料熔盐堆的反应性控制的阶段为首次临界、临界运行和停堆中一个或多个。本发明的液态燃料熔盐堆的反应性控制方法安全隐患少、设备简单、操作简便、有效且成本低。

    一种液态熔盐堆生产高活度比Sr-89和Sr-90的方法以及系统

    公开(公告)号:CN112863726A

    公开(公告)日:2021-05-28

    申请号:CN202110079312.6

    申请日:2021-01-21

    Abstract: 本发明公开了一种液态熔盐堆生产高活度比Sr‑89和Sr‑90的方法以及系统,包括:提供一种布置有若干石墨慢化组件的液态熔盐堆,Kr‑89和Kr‑90在堆运行时直接裂变产生,采用吹气方法将气体裂变产物Kr从熔盐堆中分离,首先采用冷却方法将气体Kr‑90及其子产物Rb‑90衰变生产固体Sr‑90,再采用吹气方法将剩余的气体Kr与固体Sr进行分离,再采用冷却方法将气体Kr‑89及其子产物Rb‑89衰变生产固体Sr‑89,最后采用化学分离分别提取,实现高活度比Sr‑89和Sr‑90的制备。根据本发明,提供了一种生产效率提高的、操作便捷的、经济成本低的液态熔盐堆生产Sr‑89和Sr‑90的方法以及系统。

    超铀燃料及其制备方法和嬗变方法

    公开(公告)号:CN111627569A

    公开(公告)日:2020-09-04

    申请号:CN202010407707.X

    申请日:2020-05-14

    Abstract: 本发明公开了一种超铀燃料及其制备方法和嬗变方法。该超铀燃料包括基盐和超铀元素的氟盐,其中,所述超铀元素包括钚元素(Pu)和次锕系元素(MA),所述次锕系元素的含量不低于50%。该超铀燃料的嬗变方法包括将所述超铀燃料作为液态熔盐堆的燃料并运行所述液态熔盐堆。该超铀燃料的制备简单可行,该超铀燃料的嬗变方法实现了较好的负温度反馈,保证了液态熔盐堆的固有安全性。

    一种气体冷却熔盐堆堆芯及熔盐堆系统

    公开(公告)号:CN113936820B

    公开(公告)日:2024-08-23

    申请号:CN202111079829.1

    申请日:2021-09-15

    Abstract: 本发明公开了一种气体冷却熔盐堆堆芯及熔盐堆系统。熔盐堆堆芯包括堆芯活性区、反射层、冷却剂进口和冷却剂出口,反射层围绕堆芯活性区的外侧设置,反射层内设置有控制鼓;堆芯活性区设置有冷却剂管道区和燃料熔盐区,冷却剂管道区设置有多根冷却剂管道,冷却剂管道内流通有氦氙混合气或超临界二氧化碳;燃料熔盐区内填充有燃料熔盐;冷却剂管道区与燃料熔盐区的体积比为(6~9):10;冷却剂管道的顶端与冷却剂出口相连,所述冷却剂管道的底端与所述冷却剂进口相连。本发明的熔盐堆堆芯结构简单、提升了堆芯的换热效率、降低了堆芯的建造成本和建造门槛、运行更加安全,同时极大程度上提高了熔盐堆系统的电功率。

    一种液态熔盐堆生产高活度比Sr-89和Sr-90的方法以及系统

    公开(公告)号:CN112863726B

    公开(公告)日:2022-12-09

    申请号:CN202110079312.6

    申请日:2021-01-21

    Abstract: 本发明公开了一种液态熔盐堆生产高活度比Sr‑89和Sr‑90的方法以及系统,包括:提供一种布置有若干石墨慢化组件的液态熔盐堆,Kr‑89和Kr‑90在堆运行时直接裂变产生,采用吹气方法将气体裂变产物Kr从熔盐堆中分离,首先采用冷却方法将气体Kr‑90及其子产物Rb‑90衰变生产固体Sr‑90,再采用吹气方法将剩余的气体Kr与固体Sr进行分离,再采用冷却方法将气体Kr‑89及其子产物Rb‑89衰变生产固体Sr‑89,最后采用化学分离分别提取,实现高活度比Sr‑89和Sr‑90的制备。根据本发明,提供了一种生产效率提高的、操作便捷的、经济成本低的液态熔盐堆生产Sr‑89和Sr‑90的方法以及系统。

    一种液态熔盐堆生产Mo-99的方法以及系统

    公开(公告)号:CN112863725B

    公开(公告)日:2022-12-09

    申请号:CN202110079311.1

    申请日:2021-01-21

    Abstract: 本发明提供一种液态熔盐堆生产Mo‑99的方法以及系统,该方法包括:提供一种堆芯内部布置有若干含通道的石墨慢化组件的液态熔盐堆,所述石墨慢化组件的通道内填充有低富集铀和基盐组成的熔盐,Mo‑99在该液态熔盐堆中裂变产生,在所述液态熔盐堆运行时,采用在线固液分离方法在线分离难溶固体裂变产物,然后采用冷却方法降低难溶固体裂变产物的放射性活度,最后采用化学分离方法从难溶固体裂变产物中分离回收Mo‑99,实现Mo‑99的制备。根据本发明,提供了一种生产效率提高的、操作便捷的、经济成本低的、燃料需求量低的、放射性屏蔽要求低的液态熔盐堆生产Mo‑99的方法以及系统,能够有效解决当前Mo‑99的供应需求问题。

    液态熔盐堆超铀燃料运行固有安全性的改善方法

    公开(公告)号:CN111627570A

    公开(公告)日:2020-09-04

    申请号:CN202010408589.4

    申请日:2020-05-14

    Abstract: 本发明公开了一种液态熔盐堆超铀燃料运行固有安全性的改善方法,其包括以下步骤:S1、将燃料盐和中子吸收体混合,得到超铀燃料;所述燃料盐包括基盐和超铀元素的氟盐;S2、将所述超铀燃料作为液态熔盐堆的燃料并运行所述液态熔盐堆;其中,所述超铀燃料与所述石墨慢化组件的体积比为5%~40%;在运行过程中在线补加所述超铀元素的氟盐,以维持堆芯反应的临界值为1.0~1.01,且不超过所述超铀元素的氟盐在所述基盐中的溶解上限。该方法在液态熔盐堆回收利用TRU,实现了较好的负温度反馈,保证了液态熔盐堆超铀燃料运行的固有安全性。

    重水慢化熔盐堆堆芯及重水慢化熔盐堆系统

    公开(公告)号:CN108511088A

    公开(公告)日:2018-09-07

    申请号:CN201810605632.9

    申请日:2018-06-13

    Abstract: 本发明公开了一种重水慢化熔盐堆堆芯及重水慢化熔盐堆系统。所述重水慢化熔盐堆堆芯的活性区具有各自独立的燃料区和增殖区,且所述燃料区设于所述增殖区内;所述燃料区包括重水慢化剂、熔盐管道以及燃料熔盐,熔盐管道内填充有燃料熔盐,重水慢化剂环绕在熔盐管道的外壁周围;所述熔盐管道的内、外表层为耐高温层,中间夹层为隔热层;所述增殖区内填充有增殖燃料;所述燃料区和所述增殖区之间设有隔热层。本发明重水慢化熔盐堆系统可成功解决现有熔盐热堆由于采用石墨慢化剂而导致的正温度反应性系数以及石墨退役后难处置等问题,其燃料循环方法可成功解决目前核能发展存在的核燃料资源短缺及高放废料堆积的难题。

    以石墨球为慢化剂的液态燃料熔盐堆以及石墨球更换方法

    公开(公告)号:CN111627571B

    公开(公告)日:2022-02-08

    申请号:CN202010541356.1

    申请日:2020-06-12

    Abstract: 本发明公开了以石墨球为慢化剂的液态燃料熔盐堆以及石墨球更换方法。该以石墨球为慢化剂的液态燃料熔盐堆包括一堆芯筒体和设于所述堆芯筒体内的燃料区;所述燃料区包括上层的石墨球与燃料盐的混合区域,和下层的纯燃料盐区域;所述堆芯筒体底部设有一进球口,且顶部设有一出球口,所述进球口用于向所述燃料区提供所述石墨球的进球通道,所述出球口用于提供从所述燃料区排出所述石墨球的出球通道;所述纯燃料盐区域占所述燃料区的体积百分比为2%以上。本发明中,通过在线更换石墨球实现了不停堆工况下的石墨慢化剂的更换,减少了停堆需求,延长了堆芯寿期,运行效率高;且石墨球更换过程无需借助外力,设备简单,操作简便。

    一种液态熔盐堆生产Cf-252的系统及方法

    公开(公告)号:CN113851246A

    公开(公告)日:2021-12-28

    申请号:CN202110982384.1

    申请日:2021-08-25

    Abstract: 本发明公开了一种液态熔盐堆生产Cf‑252的系统及方法,所述系统包括熔盐堆模块和后处理模块,所述熔盐堆模块包括石墨慢化通道式液态熔盐堆和燃耗产物提取装置,所述石墨慢化通道式液态熔盐堆包括串联的堆芯和热交换器,所述堆芯的内部布置有数个含通道的石墨慢化组件,所述石墨慢化组件的通道中填充有混合盐;其中,所述混合盐包括燃料盐、靶元素的氟盐和基盐;所述燃料盐包括铀的氟盐;所述靶元素包括锕系元素。该系统及方法利用液态熔盐堆生产Cf‑252,条件温和,操作简单,提高了Cf‑252产量。

Patent Agency Ranking