一种液态熔盐堆生产高活度比Sr-89和Sr-90的方法以及系统

    公开(公告)号:CN112863726A

    公开(公告)日:2021-05-28

    申请号:CN202110079312.6

    申请日:2021-01-21

    Abstract: 本发明公开了一种液态熔盐堆生产高活度比Sr‑89和Sr‑90的方法以及系统,包括:提供一种布置有若干石墨慢化组件的液态熔盐堆,Kr‑89和Kr‑90在堆运行时直接裂变产生,采用吹气方法将气体裂变产物Kr从熔盐堆中分离,首先采用冷却方法将气体Kr‑90及其子产物Rb‑90衰变生产固体Sr‑90,再采用吹气方法将剩余的气体Kr与固体Sr进行分离,再采用冷却方法将气体Kr‑89及其子产物Rb‑89衰变生产固体Sr‑89,最后采用化学分离分别提取,实现高活度比Sr‑89和Sr‑90的制备。根据本发明,提供了一种生产效率提高的、操作便捷的、经济成本低的液态熔盐堆生产Sr‑89和Sr‑90的方法以及系统。

    超铀燃料及其制备方法和嬗变方法

    公开(公告)号:CN111627569A

    公开(公告)日:2020-09-04

    申请号:CN202010407707.X

    申请日:2020-05-14

    Abstract: 本发明公开了一种超铀燃料及其制备方法和嬗变方法。该超铀燃料包括基盐和超铀元素的氟盐,其中,所述超铀元素包括钚元素(Pu)和次锕系元素(MA),所述次锕系元素的含量不低于50%。该超铀燃料的嬗变方法包括将所述超铀燃料作为液态熔盐堆的燃料并运行所述液态熔盐堆。该超铀燃料的制备简单可行,该超铀燃料的嬗变方法实现了较好的负温度反馈,保证了液态熔盐堆的固有安全性。

    放射性同位素生产装置
    3.
    发明授权

    公开(公告)号:CN113539540B

    公开(公告)日:2025-04-29

    申请号:CN202110777862.5

    申请日:2021-07-09

    Abstract: 本发明公开了一种放射性同位素生产装置。该放射性同位素生产装置包括:一端开口的容纳管,用于填装燃料盐;容纳管内设置有第一进气管和第二进气管;所述第一进气管的顶端和所述第二进气管的顶端均位于所述燃料盐的液面以上;所述第一进气管的底端位于所述液面以下;所述第二进气管的底端设置有气体分布器;所述气体分布器的出气口位于所述液面以下且朝向所述液面;所述第一进气管的底端低于所述气体分布器的出气口。该放射性同位素装置具有结构简单、可靠性高、成本低、可更换等优势,利用该装置生产放射性同位素具有流程简单、燃料利用率高、生产效率高、污染小、过程安全、可在线提取等优势。

    一种熔盐堆及其运行方法

    公开(公告)号:CN113744900B

    公开(公告)日:2024-07-05

    申请号:CN202110892885.0

    申请日:2021-08-04

    Abstract: 本发明公开了一种熔盐堆及其运行方法。该熔盐堆包括堆容器、泵和换热装置;该堆容器的内部自下而上设有下腔室、与该堆容器同轴的堆芯、上腔室和顶盖,下腔室和堆芯通过与堆容器内径相同的下支撑板分割,堆芯和上腔室通过与堆容器内径相同的上支撑板分割;堆芯的内径小于堆容器的内径,堆芯的外壁面与堆容器的内壁面形成环形空间;换热装置包括U型换热管,U型换热管设于环形空间内,U型换热管的入口端和出口端穿过顶盖,在堆容器的外部,与冷却介质管路连接;泵设于上腔室中,用于驱动下腔室中的熔盐燃料经堆芯向上腔室流动。本发明的熔盐堆具有更高的可靠性和更长的使用寿命。

    一种熔盐堆径向屏蔽结构及含其的熔盐堆

    公开(公告)号:CN113851233B

    公开(公告)日:2024-05-28

    申请号:CN202111021313.1

    申请日:2021-09-01

    Abstract: 本发明公开了一种熔盐堆径向屏蔽结构及含其的熔盐堆。该熔盐堆径向屏蔽结构,从熔盐堆的活性区至外围的方向,依次包括:反射层、含硼石墨层、合金屏蔽层,其中,所述反射层包覆熔盐堆的活性区,所述含硼石墨层包覆所述反射层,所述合金屏蔽层包覆所述含硼石墨层。本发明熔盐堆径向屏蔽结构不仅可减少熔盐堆堆内结构材料和堆容器材料的辐照损伤,包括离位原子损伤率和氦产生率,同时可有效降低堆外中子和光子的辐射剂量。

    氦氙冷却微型反应堆安全系统及控制方法

    公开(公告)号:CN116844741A

    公开(公告)日:2023-10-03

    申请号:CN202310896875.3

    申请日:2023-07-20

    Abstract: 本发明公开了一种氦氙冷却微型反应堆安全系统及控制方法,属于核能技术领域。氦氙冷却微型反应堆安全系统包括反应性控制系统和余热排出系统,反应性控制系统包括流量调节阀及控制鼓,余热排出系统包括非能动余热排出系统及热电转换系统。根据堆芯所处的不同工况,如正常工况或事故工况,反应性控制系统能够控制流量调节阀及控制鼓产生相对应的动作,使反应堆的堆内温度与压力维持正常;当堆芯停堆时,余热排出系统根据堆芯不同的停堆原因可通过不同的系统载出堆芯内的衰变热,防止堆芯内温度过高。由此,氦氙冷却微型反应堆的安全壳不会因高温导致破损进而造成放射性物质外泄,保障运行安全。

    重水慢化熔盐堆堆芯及重水慢化熔盐堆系统

    公开(公告)号:CN108511088B

    公开(公告)日:2023-07-28

    申请号:CN201810605632.9

    申请日:2018-06-13

    Abstract: 本发明公开了一种重水慢化熔盐堆堆芯及重水慢化熔盐堆系统。所述重水慢化熔盐堆堆芯的活性区具有各自独立的燃料区和增殖区,且所述燃料区设于所述增殖区内;所述燃料区包括重水慢化剂、熔盐管道以及燃料熔盐,熔盐管道内填充有燃料熔盐,重水慢化剂环绕在熔盐管道的外壁周围;所述熔盐管道的内、外表层为耐高温层,中间夹层为隔热层;所述增殖区内填充有增殖燃料;所述燃料区和所述增殖区之间设有隔热层。本发明重水慢化熔盐堆系统可成功解决现有熔盐热堆由于采用石墨慢化剂而导致的正温度反应性系数以及石墨退役后难处置等问题,其燃料循环方法可成功解决目前核能发展存在的核燃料资源短缺及高放废料堆积的难题。

    一种熔盐堆堆芯
    8.
    发明授权

    公开(公告)号:CN108389632B

    公开(公告)日:2019-10-15

    申请号:CN201810146205.9

    申请日:2018-02-12

    Abstract: 本发明公开了一种熔盐堆堆芯。该熔盐堆堆芯包括活性区和反射层,反射层包覆活性区,活性区由燃料组件阵列组装而成;活性区熔盐通道的体积占活性区体积的2‑25%;活性区包括中心区域和边缘区域,中心区域与边缘区域的体积比为1/15‑1/8;中心区域单个熔盐通道的体积占边缘区域单个熔盐通道的体积的40‑50%;削棱为被弧削侧棱。本发明的熔盐堆堆芯的熔盐通道位于燃料组件的侧棱处,具有较大的空间自屏效应调节范围,能降低辐照引起的形变应力,窄缝与熔盐通道连通使堆芯熔盐能横向混流,利于传热,避免死区,降低堆芯中心区域石墨的快中子辐照率,延长堆芯寿命,组件两端的收口结构可调节流量分配,降低上下腔室合金的快中子注量。

    一种熔盐堆上腔室
    9.
    发明公开

    公开(公告)号:CN108206065A

    公开(公告)日:2018-06-26

    申请号:CN201810147093.9

    申请日:2018-02-12

    Abstract: 本发明公开了一种熔盐堆上腔室。该熔盐堆上腔室包括设置于堆芯容器内的作为熔盐堆上腔室的底部的支撑板,和设置于堆芯容器的顶部的盖板;支撑板上设置有若干个控制棒导向口;堆芯容器包含侧管口,侧管口位于支撑板的上方,侧管口位于预设的熔盐液面下方;盖板穿设有惰性气体进口管和惰性气体出口管;惰性气体进口管的底端位于预设的熔盐液面下方,并高于支撑板;惰性气体出口管的底端位于预设的熔盐液面以上。本发明的熔盐堆上腔室可以缓冲熔盐堆一回路燃料盐体积的膨胀或收缩,可以避免熔盐与堆芯上盖板贯穿焊接口直接接触,不包含控制棒套管及溢流管和溢流罐从而降低熔盐泄漏概率以及放射性管理的难度,还可以提高氚的分离和收集效率。

    一种气体冷却熔盐堆堆芯及熔盐堆系统

    公开(公告)号:CN113936820B

    公开(公告)日:2024-08-23

    申请号:CN202111079829.1

    申请日:2021-09-15

    Abstract: 本发明公开了一种气体冷却熔盐堆堆芯及熔盐堆系统。熔盐堆堆芯包括堆芯活性区、反射层、冷却剂进口和冷却剂出口,反射层围绕堆芯活性区的外侧设置,反射层内设置有控制鼓;堆芯活性区设置有冷却剂管道区和燃料熔盐区,冷却剂管道区设置有多根冷却剂管道,冷却剂管道内流通有氦氙混合气或超临界二氧化碳;燃料熔盐区内填充有燃料熔盐;冷却剂管道区与燃料熔盐区的体积比为(6~9):10;冷却剂管道的顶端与冷却剂出口相连,所述冷却剂管道的底端与所述冷却剂进口相连。本发明的熔盐堆堆芯结构简单、提升了堆芯的换热效率、降低了堆芯的建造成本和建造门槛、运行更加安全,同时极大程度上提高了熔盐堆系统的电功率。

Patent Agency Ranking