一种海上风电变压器散热系统及其散热方法

    公开(公告)号:CN115910538A

    公开(公告)日:2023-04-04

    申请号:CN202211477397.4

    申请日:2022-11-23

    Abstract: 本发明公开了一种海上风电变压器散热系统及其散热方法,包括蒸发部分、蒸汽输送管路、冷凝部分以及液体回流管路。工质循环的动力来源于蒸发部分的毛细吸液芯,利用毛细力将液体工质从补偿室内吸入到毛细芯内;箱体内的蒸发器利用工质相变吸热,将变压器箱体内热量蒸汽输送管线输送到箱体外;在箱体外的冷凝部分采用自然风冷方式,将蒸汽工质冷却为液体工质,同时将热量释放;被冷却后的液体工质在毛细力的作用下,通过液体回流管路回到补偿室部分。本系统将环路热管技术应用到了变压器散热中,无需额外动力,仅依靠内部毛细力完成工质的相变循环,实现了变压器的强化散热。

    一种电动汽车热量管理系统及其控制方法

    公开(公告)号:CN112224091B

    公开(公告)日:2022-08-02

    申请号:CN202011106866.2

    申请日:2020-10-16

    Abstract: 本发明公开一种电动汽车热量管理系统及其控制方法,通过在制热循环中增加补气增焓模块,取消电池中的PTC加热模块,来提高汽车空调制热时的能效比,同时监测汽车各位置的温度,使得可以充分调动汽车本身的热量来达到用户的目的,而不用像以往的汽车一样去消耗电能来制冷或者制热。在充电时汽车空调系统直接接管汽车空调系统,使得空调系统可以直接从充电桩获取电能,而不用从电池中获取,避免了电池的快速老化,同时获取上一次用户打开的空调模式,如果是制热模式,就在水箱中储热,如果是制冷模式,就在水箱中储冷,使得用户在需要使用时不必在耗费电动汽车的电能来制造冷量或者热量,可以大大增加汽车的续航里程。

    一种基于丙三醇低共融溶剂体系的纳米流体的制备方法及其制备的纳米流体

    公开(公告)号:CN109207127B

    公开(公告)日:2020-05-05

    申请号:CN201810908892.3

    申请日:2018-08-10

    Abstract: 本发明公开了一种基于低共融溶剂体系的纳米流体的制备方法及其制备的纳米流体,该方法是(1)将丙三醇和氯化胆碱于室温下混合,在60~150℃下搅拌0.5~3h,冷却至室温,得到低共融溶剂;(2)向低共融溶剂中加入分散剂,在60~150℃下搅拌混合均匀,再加入纳米粒子,在60~150℃下搅拌1~12h,得到混合溶液;(3)将混合溶液放入超声分散装置中超声分散1~6h,得到以丙三醇/氯化胆碱低共融溶剂体系为基液的纳米流体。本发明将“两步法”制备纳米流体方法与低共融溶剂巧妙结合,制得的纳米流体相较于丙三醇粘度降低65%~85%、导热系数提高10%~20%、稳定性优异。本发明的制备工艺简单,材料来源广泛、重复性好,易于推广应用。

    一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料

    公开(公告)号:CN109836598B

    公开(公告)日:2020-04-03

    申请号:CN201910062305.8

    申请日:2019-01-23

    Abstract: 本发明公开了一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料,该方法是:将聚苯乙烯溶解在卤代烃溶剂中,再将有机相变材料加入溶解的聚苯乙烯中,搅拌至完全溶解,得到混合溶液;向混合溶液中加入交联剂及路易斯酸催化剂,搅拌反应12~24小时,反应结束后减压蒸除多余溶剂;将残余固体溶解在乙醇中,在碱性条件下超声分散0.5~1小时,再搅拌10~18小时;反应结束后减压蒸除溶剂,干燥,即得。本发明将超交联高分子骨架的形成步骤与相变材料的包覆步骤同步进行,保证了相变材料包覆高效,所得材料潜热高,不易泄露;同时将超交联催化剂在碱性条件下转化为相应的金属氧化物,无需去除金属催化剂,所得金属氧化物起到了强化传热的作用。

    一种动力电池的故障显示保护装置及保护方法

    公开(公告)号:CN110021790A

    公开(公告)日:2019-07-16

    申请号:CN201910057602.3

    申请日:2019-01-22

    Abstract: 本发明公开了一种动力电池的故障显示保护装置及保护方法,包括装置绝缘外壳、装置绝缘外壳内壁上设有用于固定电池的卡扣,装置绝缘外壳下端设有与电池正极接触的弹性接触片,装置绝缘外壳的顶端内部设有控制电路,装置绝缘外壳的上端设有故障指示灯以及电源总线接口,卡扣内部包括电池温度信号传感器,弹性接触片的两端与卡扣接触,电池温度信号传感器依次与装置绝缘外壳内部的保护电阻、控制电路,外部的总线接口串联;控制电路与故障指示灯信号相连。本发明可以对电池的温度进行实时监控,并利用信号处理模块中预设程序分别对电池的不同状态进行不同的处理,及时发现故障并排除,且在电池失控时可以避免由于电池失控引起的更为严重的后果。

    一种电动汽车低温环境下电池保温系统及其控制方法

    公开(公告)号:CN109301396A

    公开(公告)日:2019-02-01

    申请号:CN201810972193.5

    申请日:2018-08-24

    Abstract: 本发明公开了一种电动汽车低温环境下电池保温系统及其控制方法,包括换热箱、控制器、启动开关、保护开关、限温/保温开关、保温指示灯、加热指示灯、电加热器、循环动力源和温度检测装置,在低温度环境下通过开启电加热器对流经电加热器的传热介质进行加热,然后循环动力源驱动传热介质通过传热管道在电加热器与换热箱之间循环往复,传热介质在进入换热箱后与电池组进行热交换,由于传热介质温度较高此时温度会从传热介质传递给换热箱内的电池组,然后完成热交换的传热介质重新进入电加热器进行加热,从而对电池组持续进行加热;因此本发明能对低温环境下的电池持续进行加热及保温,从而大大缩短电池组处于低温环境的时间,延长电池组的使用寿命。

Patent Agency Ranking