-
公开(公告)号:CN114035529B
公开(公告)日:2023-09-08
申请号:CN202111411517.6
申请日:2021-11-25
Applicant: 中国矿业大学
IPC: G05B19/418
Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。
-
公开(公告)号:CN114035529A
公开(公告)日:2022-02-11
申请号:CN202111411517.6
申请日:2021-11-25
Applicant: 中国矿业大学
IPC: G05B19/418
Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。
-
公开(公告)号:CN110794782A
公开(公告)日:2020-02-14
申请号:CN201911088664.7
申请日:2019-11-08
Applicant: 中国矿业大学
IPC: G05B19/418
Abstract: 一种基于JY-MKPLS的间歇工业过程在线质量预测方法,通过a过程、b过程的三维输入数据得到二维输入矩阵Xa、Xb,二维输出矩阵Ya、Yb;进行标准化处理;从低维原始空间投影到高维特征空间F,并在高维特征空间中计算核矩阵Ka、Kb;标准化核矩阵Ka、Kb;运行JY-MKPLS算法;计算Kai、Kbi的负载矩阵;重复上述步骤直至提取出A个主元;计算输入数据矩阵K的得分矩阵T、负载矩阵P、输出数据矩阵Y的得分矩阵U、负载矩阵Q;进行批次过程质量预测;在线获得最新的输出数据ynew,并计算该批次的预测误差βn;模型预测误差的检验;用新产生的a过程数据对其进行替换;进行模型更新。该方法能快速建立精度较高的新过程预测模型,可提高建模的效率和预测精度,有效控制企业的操作成本。
-
-