基于ILSTM网络的复杂工业过程运行状态评价方法

    公开(公告)号:CN113848836B

    公开(公告)日:2023-05-12

    申请号:CN202111157507.4

    申请日:2021-09-30

    Abstract: 本发明提供了一种基于ILSTM网络的复杂工业过程运行状态评价方法,使用离线数据训练ILSTM网络特征提取模型和分类器模型,建立状态评价离线模型;使用在线数据进行运行状态评价;采样得到在线过程数据X,并对X进行标准化处理;对在线数据以窗口长度为H的滑动窗口滑动采样,得到长度一致的序列数据;将序列数据输入运行状态评价模型,得到在线数据属于不同运行状态等级的后验概率,最终的评价结果为当前时刻最大后验概率对应的状态等级;当运行状态评价模型评价当前运行状态为非优时,进行非优因素追溯。该方法能够提取出与综合经济指标动态变化相关的过程信息,可实现工业过程数据中非线性与动态时变特征的有效提取,有助于得到完整的过程运行状态评价模型。

    一种基于潜变量过程迁移模型的间歇过程集成优化方法

    公开(公告)号:CN112506050A

    公开(公告)日:2021-03-16

    申请号:CN202011218977.2

    申请日:2020-11-04

    Abstract: 一种基于潜变量过程迁移模型的间歇过程集成优化方法,获取新生产过程B和旧生产过程A的数据信息,且展开二维数据矩阵以获得Xa、Ya、Xb、Yb;对A和B生产过程的数据矩阵进行归一化处理,并建立过程迁移模型;构造优化问题并求解B生产过程最优解xb(k)*;在单个批次运行期间内对操作变量x设定n个决策点,将其分成n+1段;当到达第i个决策点时,判断是否缺失数据,在决策点形成输入矢量,对未知数据进行补充,预估未来的操作变量轨迹;判断决策点i处是否存在扰动,存在扰动计算新的控制剖面;对操作变量进行补偿更新,对补偿后的优化解进行滤波;获取最终产品质量,并使用新的控制剖面操作第k+1个批次。该方法能有利于提高产品的生产质量。

    基于ATL-BMA的非线性工业过程低成本建模方法

    公开(公告)号:CN114035529B

    公开(公告)日:2023-09-08

    申请号:CN202111411517.6

    申请日:2021-11-25

    Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。

    基于ATL-BMA的非线性工业过程低成本建模方法

    公开(公告)号:CN114035529A

    公开(公告)日:2022-02-11

    申请号:CN202111411517.6

    申请日:2021-11-25

    Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。

    基于ILSTM网络的复杂工业过程运行状态评价方法

    公开(公告)号:CN113848836A

    公开(公告)日:2021-12-28

    申请号:CN202111157507.4

    申请日:2021-09-30

    Abstract: 本发明提供了一种基于ILSTM网络的复杂工业过程运行状态评价方法,使用离线数据训练ILSTM网络特征提取模型和分类器模型,建立状态评价离线模型;使用在线数据进行运行状态评价;采样得到在线过程数据X,并对X进行标准化处理;对在线数据以窗口长度为H的滑动窗口滑动采样,得到长度一致的序列数据;将序列数据输入运行状态评价模型,得到在线数据属于不同运行状态等级的后验概率,最终的评价结果为当前时刻最大后验概率对应的状态等级;当运行状态评价模型评价当前运行状态为非优时,进行非优因素追溯。该方法能够提取出与综合经济指标动态变化相关的过程信息,可实现工业过程数据中非线性与动态时变特征的有效提取,有助于得到完整的过程运行状态评价模型。

    基于主动学习和BN的重介质选煤过程安全运行控制方法

    公开(公告)号:CN112415894A

    公开(公告)日:2021-02-26

    申请号:CN202011304778.3

    申请日:2020-11-20

    Abstract: 本发明公开了一种基于主动学习和BN的重介质选煤过程安全运行控制方法,属于工业安全运行控制技术领域。本发明在分析重介质选煤过程中异常工况机制及相应操作方案的基础上,将主动学习引入到贝叶斯网络的结构学习中,减少所需数据量,提高贝叶斯网络结构学习的效率。利用贝叶斯网络能够结合定性专家知识与定量数据信息分析轻重度异常工况的优势,将异常工况的现象变量作为证据信息,通过贝叶斯推理得到不同等级决策变量的后验概率,并遵循后验概率最大的原则获取相应的控制决策,为排除重介质选煤过程中的异常工况提供决策依据。本发明能有效排除重介质选煤过程中的异常工况,为操作人员的安全控制决策提供依据。

    基于相似度多源域迁移学习策略的间歇过程质量预测方法

    公开(公告)号:CN111610768A

    公开(公告)日:2020-09-01

    申请号:CN202010523586.5

    申请日:2020-06-10

    Abstract: 一种基于相似度多源域迁移学习策略的间歇过程质量预测方法,通过采集目标域和源域过程的输入输出数据,将多个源域旧过程和目标域新过程的三维输入数据按批次方向展开为二维数据矩阵,对所有过程的输入输出数据进行标准化;通过数据之间的欧式距离计算每个源域旧过程与目标域新过程的相似度,同时计算每个源域旧过程的样本数量,确定影响迁移效果的两个主要因素,基于这两个主要影响因素给出三个具体的选择和标准:拒绝迁移、择优单迁、多源集成迁移,在尽可能避免“负迁移”的同时,利用多个相似源域中旧流程的数据信息,减少数据资源的浪费,提高迁移学习的效率和灵活性,更好地协助并加速目标域中新过程的建模,从而提高质量预测的准确性。

    一种基于潜变量过程迁移模型的间歇过程集成优化方法

    公开(公告)号:CN112506050B

    公开(公告)日:2021-12-03

    申请号:CN202011218977.2

    申请日:2020-11-04

    Abstract: 一种基于潜变量过程迁移模型的间歇过程集成优化方法,获取新生产过程B和旧生产过程A的数据信息,且展开二维数据矩阵以获得Xa、Ya、Xb、Yb;对A和B生产过程的数据矩阵进行归一化处理,并建立过程迁移模型;构造优化问题并求解B生产过程最优解xb(k)*;在单个批次运行期间内对操作变量x设定n个决策点,将其分成n+1段;当到达第i个决策点时,判断是否缺失数据,在决策点形成输入矢量,对未知数据进行补充,预估未来的操作变量轨迹;判断决策点i处是否存在扰动,存在扰动计算新的控制剖面;对操作变量进行补偿更新,对补偿后的优化解进行滤波;获取最终产品质量,并使用新的控制剖面操作第k+1个批次。该方法能有利于提高产品的生产质量。

    一种二阶修正自适应间歇过程优化方法

    公开(公告)号:CN111679643A

    公开(公告)日:2020-09-18

    申请号:CN202010599839.7

    申请日:2020-06-28

    Abstract: 一种二阶修正自适应间歇过程优化方法,将生产过程a、b的三维输入数据矩阵按照批次方向展开为二维输入数据矩阵Xa,Xb;对Xa,Xb按列进行标准化处理,对生产过程a和b的二维输出数据矩阵Ya,Yb进行标准化处理;利用Xa,Xb和Ya,Yb建立潜变量过程迁移模型;令i=i+1,重复步骤三至步骤四直到提取出A个主元;提取出全部主成分;收集的生产数据信息;采用二阶修正自适应优化方法进行批次间优化;判断当前批次的输入数据与求得的下一批次的最优输入数据之差的范数是否小于预设阈值;过程输出;根据当前批次的最优输入数据和实际输出数据对所述潜变量过程迁移模型进行更新;对旧过程数据进行剔除;对第k+1个批次的优化操作。该方法能高效且显著的提升产品的最终质量和优化过程的效率。

    基于核局部线性嵌入PLS的复杂工业过程运行状态评价方法

    公开(公告)号:CN114384870B

    公开(公告)日:2024-06-11

    申请号:CN202111329913.4

    申请日:2021-11-10

    Abstract: 本发明公开了一种基于核局部线性嵌入PLS的复杂工业过程运行状态评价方法,包括离线建模、在线评价和非优原因追溯。首先使用KLLEPLS算法建立离线模型,该模型不仅能够提取与综合经济指标(CEI)相关性最大的特征,而且能够保持数据的局部非线性结构;然后针对过程强非线性关系提出一种新的在线评价方法,通过计算在线数据特征与离线建模数据特征之间的相似性,制定有效的评价规则,实现在线数据的实时评价;当评价结果非优时,根据提取的在线数据计算变量的贡献率,确定非优原因变量。本发明有效解决了现有评价方法在强非线性过程提取特征信息不全面的问题,从而使评价结果更准确,保障了生产产品的质量。

Patent Agency Ranking