一种基于电容触摸屏的平面机器人位置检测方法及系统

    公开(公告)号:CN105547120B

    公开(公告)日:2018-08-17

    申请号:CN201510933230.8

    申请日:2015-12-15

    Abstract: 一种基于电容触摸屏的平面机器人位置检测方法及系统,属于平面机器人位置检测方法及系统。用以准确的检测平面机器人末端位置坐标,该系统包括电容屏触发装置、电容触摸屏支撑装置、显示屏、计算机、辅助固定装置;其中:电容屏触发装置包括固定磁铁、弹簧控制板、隔磁材料、复位弹簧、电磁铁、电容屏触发器、电磁铁连接线,电容触摸屏装置包括支撑装置底座、调整平台、调整旋钮、防滑支撑腿、旋转轴承、电容触摸屏、触摸屏固定垫片,辅助固定装置包括夹紧底座、夹紧板、夹紧螺钉;本发明提供一种基于电容触摸屏的平面机器人位置检测方法及系统,解决现有方法测量过程复杂、测量时间较长、测量范围受限制以及测量仪器受损严重的问题。

    风电机组永磁直驱变桨距系统动态负载模拟装置和方法

    公开(公告)号:CN108343565A

    公开(公告)日:2018-07-31

    申请号:CN201810382531.X

    申请日:2018-04-26

    Abstract: 本发明公开了一种风电机组永磁直驱变桨距系统动态负载模拟装置和方法,装置:转矩/转速传感器的扭力轴分别与位于其左右两侧的永磁电机和磁粉式测功机连接;永磁电机、转矩/转速传感器分别通过变频器、采集卡与上位计算机连接;磁粉式测功机通过扭矩/转速调节器与测功机控制器连接;测功机控制器与上位计算机连接,还通过电流调节器与磁粉式测功机连接。方法:计算打开、关闭浆叶过程中永磁直驱变桨系统的负载力矩;根据相似理论计算负载力矩相似系数;计算动态负载模拟装置中磁粉式测功机输出的负载力矩。该装置和方法能够准确模拟出永磁直驱变桨距系统在工况环境下的负载情况,为永磁直驱变桨距系统控制策略的可靠性和合理性提供验证基础。

    一种基于电容触摸屏的平面机器人位置检测方法及系统

    公开(公告)号:CN105547120A

    公开(公告)日:2016-05-04

    申请号:CN201510933230.8

    申请日:2015-12-15

    CPC classification number: G01B7/003

    Abstract: 一种基于电容触摸屏的平面机器人位置检测方法及系统,属于平面机器人位置检测方法及系统。用以准确的检测平面机器人末端位置坐标,该系统包括电容屏触发装置、电容触摸屏支撑装置、显示屏、计算机、辅助固定装置;其中:电容屏触发装置包括固定磁铁、弹簧控制板、隔磁材料、复位弹簧、电磁铁、电容屏触发器、电磁铁连接线,电容触摸屏装置包括支撑装置底座、调整平台、调整旋钮、防滑支撑腿、旋转轴承、电容触摸屏、触摸屏固定垫片,辅助固定装置包括夹紧底座、夹紧板、夹紧螺钉;本发明提供一种基于电容触摸屏的平面机器人位置检测方法及系统,解决现有方法测量过程复杂、测量时间较长、测量范围受限制以及测量仪器受损严重的问题。

    一种基于电阻触摸屏的平面机器人位置检测方法及系统

    公开(公告)号:CN105547119B

    公开(公告)日:2018-07-06

    申请号:CN201510931840.4

    申请日:2015-12-15

    Abstract: 一种基于电阻触摸屏的平面机器人位置检测方法及系统,属于平面机器人位置检测方法及系统。用以准确的检测平面机器人末端位置坐标,该系统包括电阻屏触发装置、电阻触摸屏支撑装置、显示屏、计算机、辅助固定装置;其中:电阻屏触发装置包括固定磁铁、弹簧控制板、隔磁材料、复位弹簧、电磁铁、电阻屏触发器、电磁铁连接线,电阻触摸屏装置包括支撑装置底座、调整平台、调整旋钮、防滑支撑腿、旋转轴承、电阻触摸屏、触摸屏固定垫片,辅助固定装置包括夹紧底座、夹紧板、夹紧螺钉;本发明提供一种基于电阻触摸屏的平面机器人位置检测方法及系统,解决现有方法测量过程复杂、测量时间较长、测量范围受限制以及仪器造价昂贵的问题。

    一种基于片簧的可变刚度柔性关节及其控制方法

    公开(公告)号:CN108000554A

    公开(公告)日:2018-05-08

    申请号:CN201711239915.8

    申请日:2017-11-30

    Abstract: 本发明公开了一种基于片簧的变刚度柔性关节,包括输入轴、输出轴、刚度调整机构、位移检测系统和控制系统,所述的输入轴包括第一输入轴和第二输入轴;所述的输出轴包括第一输出轴、第二输出轴、输出端盖;所述的刚度调整机构包括控制电机、调度盘、连杆组、片簧组和滑块组;所述输入轴与输出轴之间通过转动副进行配合,并固定在其中;所述的刚度调整机构安装在输出轴上,其中控制电机固定在第一输出轴底部,片簧组固定在第二输出轴内侧,滑块组安装在第二输出轴的滑槽中。本柔性关节不仅结构简单、可小型化,而且易于控制,同时刚度可线性调节,调节精度高,误差小,应用范围广。

    一种低速大扭矩永磁驱动系统的负载模拟试验装置及方法

    公开(公告)号:CN107490763A

    公开(公告)日:2017-12-19

    申请号:CN201710721494.6

    申请日:2017-08-22

    CPC classification number: G01R31/34

    Abstract: 本发明公开了一种低速大扭矩永磁驱动系统的负载模拟试验装置及方法,包括基座、永磁驱动系统、转矩转速传感器Ⅰ、升速箱、转矩转速传感器Ⅱ、测功机、测功机驱动器、测功机控制器、数据采集卡、上位计算机、永磁电机控制器以及永磁电机驱动器;所述永磁驱动系统由永磁电机、永磁电机驱动器和永磁电机控制器组成;本发明通过测功机实现永磁电机的负载特性的模拟;升速箱安装在永磁电机和测功机之间,降低测功机载荷加载需求;上位计算机通过永磁电机控制器和驱动器控制永磁电机,通过测功机控制器和驱动器控制测功机;从而能准确模拟出矿用刮板输送机处于各种工况环境下的负载情况,从而便于对永磁变频驱动系统控制策略进行验证。

    一种软测量下采用压电陶瓷片的柔性机械臂振动主动控制方法

    公开(公告)号:CN105404150B

    公开(公告)日:2017-12-01

    申请号:CN201510895011.5

    申请日:2015-12-08

    Abstract: 本发明公开了一种软测量下采用压电陶瓷片的柔性机械臂振动主动控制方法,具体如下:1)粘贴加速度传感器,获取柔性机械臂末端的振动信号;2)建立末端粘贴加速度传感器的柔性机械臂系统数学模型,获取系统动力学特性;3)设计振动观测方程,观测柔性机械臂振动位移;4)基于全局优化算法,确定最优的振动观测反馈参数;5)设计PID控制器控制压电陶瓷驱动电压,根据控制效果调节PID控制参数;经过上述各步骤后,设计结束;本方法基于柔性机械臂系统数学模型,建立振动观测方程,并且利用加速度传感器获得柔性机械臂末端振动信号、反馈调节观测出的柔性机械臂振动位移,能够获得柔性机械臂上任一点的振动信号,有效提高了观测精度。

Patent Agency Ranking