-
公开(公告)号:CN117892626B
公开(公告)日:2024-09-13
申请号:CN202410067648.4
申请日:2024-01-17
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于增强物理意义神经网络的复杂油藏数值模拟方法,该方法利用增强物理意义的神经网络正向求解复杂油藏的压力和饱和度分布,设计邻接位置锚定、使用自适应激活函数、设计跳跃连接门控更新来提升模型的训练速度与求解精度,利用硬约束边界条件、嵌入式离散裂缝、有限体积法结合反向传播梯度下降法来计算损失函数以及更新神经网络参数,利用隐压显饱法结合神经网络预测结果来显式更新饱和度,将神经网络参数迁移来加快训练速度,神经网络训练整体无需标签数据,在复杂三维非均质与三维裂缝问题的实施例中具备优秀的训练速度与求解精度。
-
公开(公告)号:CN117236158B
公开(公告)日:2024-08-23
申请号:CN202310969755.1
申请日:2023-08-03
Applicant: 中国石油大学(华东)
IPC: G06F30/27 , G06N3/0464 , G06N3/08 , G06N3/084 , E21B49/00 , G06F111/10
Abstract: 本发明公开了一种基于物理意义神经网络的页岩气藏数值模拟方法,属于气藏工程技术领域,包括如下步骤:步骤1、采集页岩气藏相关数据;步骤2、构建卷积神经网络模型,设置模型的超参数;步骤3、利用第一个时间步的压力数据作为标签,预训练得到初始化完成的卷积神经网络模型;步骤4、后续时间步根据模型输出的压力数据和模型参数进行正向传播,利用有限体积法计算损失误差;步骤5、反向传播优化模型权重,通过不断迭代训练使得损失值下降到指定范围;步骤6、重复步骤4‑步骤5,得到页岩气藏任意时间步的压力分布情况。本发明实现了利用嵌入物理意义的卷积神经网络模型正向求解页岩气藏压力变化,且无需标签数据,具有较高的精度和效率。
-
公开(公告)号:CN117236195A
公开(公告)日:2023-12-15
申请号:CN202311490309.9
申请日:2023-11-10
Applicant: 中国石油大学(华东)
IPC: G06F30/27 , G06N3/126 , G06N20/20 , G06F18/23213 , G06F18/2135 , G06F111/10 , G06F111/06
Abstract: 本发明公开了一种降低开发风险的机器学习离线代理模型生产优化方法,涉及油藏生产优化技术领域。本方法利用主成分分析提取各渗透率场的主要特征,对各渗透率场聚类后选取代表渗透率场构建多个油藏数值模拟模型,以各油藏数值模拟模型的加权平均净现值作为目标函数,建立考虑渗透率场不确定性的油藏注采优化问题求解模型,再构建离线数据库和初始种群,利用离线数据库分别建立多个径向基函数代理模型和克里金函数代理模型,通过自适应选取代理模型作为优化目标进行迭代优化,优化过程结合多子代策略增加种群多样性,获得最佳开发方案。本发明充分利用离线数据库指导注采优化过程,缩短优化时间的同时,精准获取油藏高效注采方案,降低了方案风险。
-
公开(公告)号:CN116467624A
公开(公告)日:2023-07-21
申请号:CN202310320005.1
申请日:2023-03-28
Applicant: 青岛理工大学 , 中国石油大学(华东)
IPC: G06F18/24 , G06F18/214 , G06F18/21 , G06N3/0455 , G06N3/0499 , G06N3/096
Abstract: 本发明公开了一种基于迁移学习和ViT网络的抽油机工况诊断方法,属于石油工程技术领域,具体包括以下步骤:步骤1、收集油田区块中抽油机的载荷和冲程数据,并对数据进行预处理;步骤2、构建基于迁移学习和ViT网络模型的抽油机工况诊断模型,并进行模型训练;步骤3、利用测试集数据检查模型的性能;步骤4、基于训练完成的抽油机工况诊断模型,进行抽油机工况实时诊断。本发明具有计算速度快,经济成本低,表征精度高,无需考虑地质静态参数等优点;可以实时诊断该油田区块抽油机的工况类别,无需经过大量、耗时的计算,节省了大量时间,提高了油田工作效率,可满足油田实际工程要求。
-
公开(公告)号:CN114429009B
公开(公告)日:2022-07-29
申请号:CN202210358246.0
申请日:2022-04-07
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于元迁移学习的小样本有杆泵井工况诊断方法,属于石油工况诊断技术领域,本发明结合迁移学习和元学习两者性能的优点构建元迁移学习算法框架,通过使用在相关数据集上的预训练所得良好的网络初始化参数,再利用元学习特有的超参数自动学习能力,以更高的效率训练出用于工况诊断的模型,并将该模型应用于有杆泵井工况的实时监测中,实现科学合理地诊断油井生产问题,从而显著改善油藏开发效果;同时,使用元梯度正则化策略和困难任务样本选取方法,适用于实际油田井数多但可用带诊断标签少的情况,更贴近实际油田现场的油井故障诊断情况。
-
公开(公告)号:CN114510880A
公开(公告)日:2022-05-17
申请号:CN202210407067.1
申请日:2022-04-19
Applicant: 中国石油大学(华东)
IPC: G06F30/27 , G06K9/62 , E21B47/008
Abstract: 本发明公开了一种基于傅里叶变换和几何特征的有杆泵工况诊断方法,属于有杆泵工况诊断技术领域,包括以下步骤:对所获有杆泵生产数据进行选择;针对示功图进行基于波动方程的傅里叶系数提取;获取示功图曲线数据,进行示功图简单几何特征提取;采用DCA将傅里叶系数与简单几何特征进行融合;使用XGBoost算法建立有杆泵工况诊断模型,并进行模型训练;进行有杆泵工况诊断模型的参数优化;对优化后的有杆泵工况诊断模型,进行模型性能评价;将训练完成的有杆泵工况诊断模型应用到油田现场。本发明能够提高油田开发现场对有杆泵工况诊断的效率,同时提高对油田现有数据的有效利用,实现高效诊断有杆泵工况。
-
公开(公告)号:CN114492216A
公开(公告)日:2022-05-13
申请号:CN202210406824.3
申请日:2022-04-19
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于高分辨率表征学习的抽油机运行轨迹模拟方法,属于石油工程技术领域,包括如下步骤:构建并联多分辨率网络模型;设定模型参数;收集抽油机图像数据集,标注关键点并制作样本集;增强数据集;输入并联多分辨率网络模型进行多分辨率并行卷积;多分辨率融合;输出预测关键点位置热点图;误差反向传播,优化学习器参数;输出抽油机关键点预测热图;模型评价;输出模型在线应用。本发明方法学习到的抽油机关键点高分辨率表示不仅在语义上很强,而且在空间上也很精确。本发明借助多分辨率并联网络,实现关键点热图预测,模拟抽油机运行轨迹,节省油田成本。
-
公开(公告)号:CN114444620A
公开(公告)日:2022-05-06
申请号:CN202210362470.7
申请日:2022-04-08
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于生成式对抗神经网络的示功图故障诊断方法,属于采油故障诊断技术领域,包括如下步骤:对示功图样本库数据进行数据清洗;基于采油工程理论及典型示功图特性,对示功图数据点进行特征提取;对数量较少的故障类别样本采用生成式对抗神经网络进行生成,生成过程中对生成器网络的输出进行条件约束;基于原始样本及生成样本,将数据划分为训练集、验证集、测试集;采用Xgboost分类算法对样本进行分类;利用准确率和召回率对故障诊断结果进行综合评估;利用训练完成后的分类模型对故障进行实时监测诊断,实时判断故障类型。本发明能够显著提高分类模型对故障样本的特异识别能力,降低故障的误报/漏报率。
-
公开(公告)号:CN119005027A
公开(公告)日:2024-11-22
申请号:CN202411497944.4
申请日:2024-10-25
Applicant: 中国石油大学(华东)
IPC: G06F30/27 , G06F111/10
Abstract: 本发明公开了一种集成代理模型与在线学习的油藏参数反演建模方法,属于油气藏开发领域,包括如下步骤:结合油藏数值模拟器与先验参数,构建数据集;构建并训练基于Transformer模型的油藏数值模拟代理模型;使用优化算法迭代调整油藏模型参数集合;构建在线学习机制,基于随机丢弃神经元结构确定代理模型预测的不确定性,挑选不确定性大的油藏模型参数;对挑选的油藏模型参数进行数值模拟,获取新的模拟生产数据,使用当前所有的数据集重新训练代理模型;根据最终油藏模型参数集合,确定实际油藏参数的分布情况,完成油藏参数反演过程。本发明能够根据少量的油藏数值模拟,构建准确的数值模拟代理模型,提高油藏参数反演效率。
-
公开(公告)号:CN118552338B
公开(公告)日:2024-10-29
申请号:CN202411027890.5
申请日:2024-07-30
Applicant: 中国石油大学(华东)
IPC: G06F17/00 , G06Q50/02 , G06F18/213 , G06F18/25 , G06F18/27
Abstract: 本发明公开了一种基于多阶段历史经验迁移的快速更新历史拟合范式,涉及油藏历史拟合技术领域。本发明根据油藏的先验地质模型,获取先验信息并对先验地质模型进行降维处理,确定降维信息后,在油田开采周期各历史阶段分别利用降维信息与先验信息进行高斯随机采样获取历史经验建立历史阶段代理模型,再在目标阶段进行高斯随机采集模拟建立目标阶段代理模型,将历史阶段代理模型与目标阶段代理模型相耦合,建立历史经验迁移模型,结合最优化算法搜索最优地质参数。本发明方法引入了历史阶段至目标阶段的迁移学习,大幅减少了目标阶段所需样本数目,既缩短了拟合时间,又提高了油藏新阶段历史拟合的速度和精度,实现了对油藏历史拟合的快速更新。
-
-
-
-
-
-
-
-
-