锥束CT圆加直线轨迹反投影滤波重建方法

    公开(公告)号:CN106228584B

    公开(公告)日:2019-08-13

    申请号:CN201610572019.2

    申请日:2016-07-20

    Abstract: 本发明涉及一种锥束CT圆加直线轨迹反投影滤波重建方法,针对圆加直线扫描轨迹的成像几何特点,选取M‑lines,通过求解穿过M‑line上重建点的R‑line的端点坐标,确定反投影积分区间,通过Hilbert变换,实现物体重建。本发明能够有效解决单圆轨迹大锥角扫描时锥角效应问题,在圆轨迹扫描的基础上,增加直线扫描轨迹,使其能够满足精确重建条件,获得完整的重建投影数据,能够较好的应用于实际扫描,有效提高大锥角重建图像质量,对于扩展锥束CT扫描应用范围具有重要的实用意义。

    基于总曲率联合总变分的CT图像稀疏角度重建方法及装置

    公开(公告)号:CN107016653B

    公开(公告)日:2019-07-09

    申请号:CN201710197760.X

    申请日:2017-03-29

    Abstract: 本发明涉及CT图像重建领域,公开了一种基于总曲率联合总变分的CT图像稀疏角度重建方法,包含设定加权因子;建立总曲率联合总变分最小化模型;利用交替方向法推导出最终的CT图像重建算法;进行最终的CT图像重建算法,实现并获得最终重建结果。本发明还公开了一种基于总曲率联合总变分的CT图像稀疏角度重建装置,包括加权因子设定模块、总曲率联合总变分最小化模型建立模块、最终的CT图像重建算法推导模块和最终重建结果获得模块。本发明效率高,能够适应更少的采集数据并且提升重建图像质量。

    基于OpenCL-To-FPGA的CT图像重建反投影加速方法

    公开(公告)号:CN104142845B

    公开(公告)日:2018-08-17

    申请号:CN201410347123.2

    申请日:2014-07-21

    Abstract: 本发明公开了一种基于OpenCL‑To‑FPGA的CT图像重建反投影加速方法,主要利用FPGA实现了CT图像重建反投影步骤的加速,具体为:在OpenCL编程模型中,构建CPU和FPGA协作的CPU‑FPGA异构计算模式,CPU和FPGA间通过PCI‑E总线进行通信,CPU作为主机端,负责算法中的串行任务以及对FPGA的配置与控制任务;FPGA作为协处理器端,通过加载OpenCL内核程序以实现对反投影计算的并行流水加速。在编程模式中,FPGA执行程序全部采用类C/C++风格的OpenCL语言开发,开发简便,修改灵活,能大大缩短研发周期,减少产品维护和升级的研发成本;另一方面,新方法基于OpenCL框架,代码可以实现跨平台快速移植,适合扩展和应用于多处理器异构平台的协同加速之中。

    一种基于伪极坐标TV最小化直线轨迹CT图像重建方法

    公开(公告)号:CN104240272A

    公开(公告)日:2014-12-24

    申请号:CN201410338497.8

    申请日:2014-07-16

    Abstract: 本发明公开了一种基于伪极坐标TV最小化直线轨迹CT图像重建方法,克服了现有技术中,直线轨迹计算机断层成像(linearcomputedtomography,LCT)技术的有限角度图像重建的问题。该发明包含以下步骤——步骤1:建立TV最小化重建模型;步骤2:利用ADM最小化TV模型;步骤3:利用PPFFT实现图像空-频域变换;步骤4:实现并运行算法,获得重建图像。该LCT重建技术基于交替方向法设计了TV最小化模型的求解算法,具有稳定的收敛性;并且,由于采用了伪极快速傅里叶变换,该算法具有优异的重建精度和计算效率。基于伪极坐标TV最小化LCT图像重建技术,在LCT技术投入实用化中具有重要意义。

    基于基图像TV模型的CT射束硬化校正方法

    公开(公告)号:CN102609908A

    公开(公告)日:2012-07-25

    申请号:CN201210010808.9

    申请日:2012-01-13

    Abstract: 本发明涉及一种CT透射成像射束硬化校正方法,特别是涉及一种基于基图像TV最小化模型的CT射束硬化校正方法。一种基于基图像TV模型的CT射束硬化校正方法,在建立带有可调参数的射束硬化校正模型的基础上,通过下述步骤完成:首先,在不同的可调参数条件下,原始投影数据经该模型预处理变换得到多组预处理投影序列,然后,分别对预处理投影序列进行重建得到一系列校正基图像,并以目标图像的全变分函数作为代价函数,通过迭代法求得加权系数最优解,最后,将得到的系列基图像加权求和,形成最终重建图像。与传统方法相比,不需要扫描件材质、射线源条件等先验知识,不受外在条件限制,通用性强;在确定加权系数时是对线性组合求解,因此具有计算复杂度小,运算时间短的优点。

    检错比特并行脉动阵列移位多项式基乘法器

    公开(公告)号:CN101968732A

    公开(公告)日:2011-02-09

    申请号:CN201010501073.0

    申请日:2010-10-09

    Abstract: 本发明涉及信息安全技术中的一种乘法器结构,特别是涉及一种具备检错能力的比特并行脉动阵列移位多项式基乘法器。该乘法器针对一类被国际标准广泛采纳的有限域——不可约三项式定义的域GF(2m)设计,其设计原理清晰,结构规则化模块化,适合大规模集成电路设计,且因该设计采用脉动阵列结构,适合连续乘法计算,计算效率非常高。另外,借助汉明编码理论,在低开销的代价下乘法器引入并行检错功能,能够较大程度上保证计算结果的正确性,进而能够有效抵抗故障分析攻击,为密码体制的实现提供更可靠的安全保证。

    一种基于动态电流的锥束CT环状伪影校正方法

    公开(公告)号:CN105787905B

    公开(公告)日:2019-03-26

    申请号:CN201610176008.2

    申请日:2016-03-24

    Abstract: 本发明公开了一种基于动态电流的锥束CT环状伪影校正方法,克服了现有技术中,重建图像中有环状伪影残留问题。该发明含有以下步骤:步骤1、利用动态电流下探元响应与管电流是否满足线性关系,将探元分为坏点和响应不一致探元两类;步骤2、判断不同管电流下单个探元响应的增量是否为零,对第一类坏点进行检测;步骤3、计算每一个探元的输出响应与管电流的相关系数,利用相关性分析的方法对第二类坏点进行检测;步骤4、计算探元响应和管电流间的线性回归方程,以单个管电流下所有探元响应的均值为基准,计算探元的一致性校正参数矩阵。本发明解决了现有坏点检测方法阈值确定困难的问题,本发明方法对环状伪影校正效果较好,通用性较强。

    一种X射线成像系统中的变电流投影融合方法

    公开(公告)号:CN105205842B

    公开(公告)日:2017-12-15

    申请号:CN201510545646.2

    申请日:2015-08-31

    Abstract: 本发明公开了一种X射线成像系统中的变电流投影融合方法,克服了现有技术中,已有变电流投影融合技术中,人工选择融合阈值的缺陷问题。该发明具体步骤如下:(1)采集成像物体在各投影角度下不同电流的投影数据;(2)构造不同电流投影的灰度值‑有效边缘梯度序列;(3)使用动态时间弯曲方法求解最佳融合阈值;(4)计算缩放因子;(5)投影图像融合;(6)CT图像重建。该发明方法能够避免人工选择融合阈值的主观性,有效扩展探测器的动态范围。探测器动态范围得到扩展后,实验对于探测器的成像需求得到降低,从而减少硬件成本。基于融合后投影的CT图像SNR优于传统人工选择固定阈值的融合方法。

    基于非标准快速Fourier变换和交替方向法的平行束CT稀疏角度重建方法

    公开(公告)号:CN104574458B

    公开(公告)日:2017-10-27

    申请号:CN201410848116.0

    申请日:2014-12-31

    Abstract: 本发明公开了一种基于非标准快速Fourier变换和交替方向法的平行束CT稀疏角度重建方法,克服了现有技术中,图像重建方法仍有缺陷的问题。该发明的步骤如下:对平行束CT采集到的投影数据进行一维FFT变换,得到对应的极坐标下的投影频域数据;在基于极坐标的投影频域基础上,利用NUFFT技术实现图像空频域变换,以避免频域插值造成的精度损失,并建立TV最小化图像重建模型;在从投影频域恢复待重建图像的过程中,设计了基于TV最小化的频域优化模型,利用交替方向法对TV最小化模型通过增广Lagrangian函数法和交替方向乘子法进行迭代求解。本发明结合NUFFT技术和优化策略中先进的交替方向思想,能避免频域插值、计算和存储资源需求小,收敛性能好。

Patent Agency Ranking