-
公开(公告)号:CN108629741B
公开(公告)日:2020-06-16
申请号:CN201810252207.6
申请日:2018-03-26
Applicant: 中南大学
IPC: G06T5/00
Abstract: 本发明提供了一种基于L0和L1正则项的模糊核估计方法,利用L0正则项作为中间清晰图像求解时的约束条件,有效抑制振铃效应;利用L1正则项作为估计模糊核求解时的正则化约束条件,使得估计模糊核足够稀疏,根据建立的模糊核估计模型,将基于L0和L1正则项的模糊核估计方法,应用于图像金字塔理论中,由粗到细地从图像金字塔的顶层至底层求解估计模糊核,将所求得的模糊核用于图像非盲复原算法,复原出最终清晰图像。本发明能够较为准确地估计出模糊图像的模糊核,从而用估计出的模糊图像的模糊核,将初始模糊图像复原出最终清晰图像。
-
公开(公告)号:CN104496535B
公开(公告)日:2018-02-13
申请号:CN201510000877.5
申请日:2015-01-04
Applicant: 中南大学
Abstract: 一种以硅砂尾矿和粉煤灰为主要原料的高气孔率泡沫陶瓷及其制备方法,本发明配合料质量百分数为:硅砂或石英砂矿尾25~45%、粉煤灰40~60%,添加剂15~20%,添加剂中的烧结助剂5~10%、发泡剂5~10%、粘结剂2.5~5%。按设计配方称量各物质,经球磨、过筛、加粘结剂,制成配合料;将配合料压制成块状坯体,经烧结、冷却,制得高气孔率泡沫陶瓷。本发明泡沫陶瓷的密度为0.59~0.73g/cm3、气孔率65.7~69.8%、抗弯强度4.0~4.7MPa、抗压强度10.9~12.9MPa、耐酸性98.1~98.3%、耐碱性99.1~99.4%,可用作具有隔热、保温、隔音、防火功能的建筑材料。
-
公开(公告)号:CN106830690A
公开(公告)日:2017-06-13
申请号:CN201710124796.5
申请日:2017-03-03
Applicant: 中南大学
Abstract: 本发明公开了一种自增强增韧的氮化硅/氮化铝/镧钡铝硅酸盐微晶玻璃三元复合材料及其制备方法。该三元复合材料以镧钡铝硅酸盐玻璃粉末、氮化铝粉末以及α‑氮化硅粉末为原料,通过制坯和烧结制得,其含有β‑氮化硅棒晶。本发明所设计的三元复合材料具有低密度、高强度、高断裂韧性、高介电常数、低膨胀系数、高热导率等特点。本发明制备工艺较为简单,玻璃熔化温度和复合材料的烧结温度较低,对环境友好,生产成本较低。制得的复合材料具有较好的应用前景,可部分替代现有的高温结构材料,使用在国防军工、电子器件、高热导率陶瓷基板以及高端陶瓷零部件等领域。
-
公开(公告)号:CN102839308A
公开(公告)日:2012-12-26
申请号:CN201210306468.4
申请日:2012-08-24
Abstract: 一种高强高模镁合金,包括合金元素与镁基体,所述合金元素占高强高模稀土镁合金总量的3-20%,余量为镁;合金元素包括重稀土、硅和/或锗、锡和/或锑和/或锌。Si和Ge以及Sn、Sb和Zn可以同时加入,也可加入其中的一种;重稀土选自钆、镝、铽、钬、铒、铥、镱和镥中的至少一种。其制备方法是在保护气氛下将纯镁加热熔化,将纯硅加入到纯镁熔体内,搅拌、溶解后,再升温20-30℃,依次加入其余组分的中间合金并搅拌,控制中间合金完全熔化至浇铸时间小于等于4分钟,浇铸,得到铸锭。发明组分配比合理、加工制造容易,制备的高强高模镁合金具有高的室温强度和弹性模量,较好的塑性。综合性能明显高于现有的稀土镁合金。适于工业化生产。
-
公开(公告)号:CN106830690B
公开(公告)日:2019-02-19
申请号:CN201710124796.5
申请日:2017-03-03
Applicant: 中南大学
Abstract: 本发明公开了一种自增强增韧的氮化硅/氮化铝/镧钡铝硅酸盐微晶玻璃三元复合材料及其制备方法。该三元复合材料以镧钡铝硅酸盐玻璃粉末、氮化铝粉末以及α‑氮化硅粉末为原料,通过制坯和烧结制得,其含有β‑氮化硅棒晶。本发明所设计的三元复合材料具有低密度、高强度、高断裂韧性、高介电常数、低膨胀系数、高热导率等特点。本发明制备工艺较为简单,玻璃熔化温度和复合材料的烧结温度较低,对环境友好,生产成本较低。制得的复合材料具有较好的应用前景,可部分替代现有的高温结构材料,使用在国防军工、电子器件、高热导率陶瓷基板以及高端陶瓷零部件等领域。
-
公开(公告)号:CN108629741A
公开(公告)日:2018-10-09
申请号:CN201810252207.6
申请日:2018-03-26
Applicant: 中南大学
IPC: G06T5/00
Abstract: 本发明提供了一种基于L0和L1正则项的模糊核估计方法,利用L0正则项作为中间清晰图像求解时的约束条件,有效抑制振铃效应;利用L1正则项作为估计模糊核求解时的正则化约束条件,使得估计模糊核足够稀疏,根据建立的模糊核估计模型,将基于L0和L1正则项的模糊核估计方法,应用于图像金字塔理论中,由粗到细地从图像金字塔的顶层至底层求解估计模糊核,将所求得的模糊核用于图像非盲复原算法,复原出最终清晰图像。本发明能够较为准确地估计出模糊图像的模糊核,从而用估计出的模糊图像的模糊核,将初始模糊图像复原出最终清晰图像。
-
公开(公告)号:CN104496176B
公开(公告)日:2017-02-01
申请号:CN201510006802.8
申请日:2015-01-07
Applicant: 中南大学
IPC: C03C3/095
Abstract: 本发明公开了一种高弹能耗散能力氧氮玻璃材料及其制备方法,该氧氮玻璃材料由SiO2、Al2O3、Y2O3、Si3N4以及ZnO和/或SrO通过熔融、退火处理得到;该高弹能耗散能力氧氮玻璃材料制备工艺简单、工艺条件温和、原料成本低,制得的2mm厚透明氧氮玻璃在可见光区(400~800nm)的透过率不低于75%,玻璃的相对弹能耗散系数Drel可达到2.65,且熔制温度较低,可制备大块玻璃材料,完全可以替换现有技术中的蓝宝石和AlON陶瓷材料,应用于轻型透明装甲材料、紫外探测、透红外窗口等领域。
-
公开(公告)号:CN104529518A
公开(公告)日:2015-04-22
申请号:CN201510008874.6
申请日:2015-01-08
Applicant: 中南大学 , 湖南百沃实业发展有限公司
IPC: C04B38/02 , C04B35/00 , C04B35/622
Abstract: 本发明公开了一种铅锌矿尾矿-赤泥-粉煤灰基泡沫陶瓷及其制备方法,该泡沫陶瓷由铅锌矿尾矿、赤泥、粉煤灰和助烧剂等主要原料组分通过制坯、烧结而成:该制备工艺简单、反应条件温和、原料成本低,制备的泡沫陶瓷以Na6Ca2Al6Si6O24(SO4)2为主晶相,包含Fe2O3、少量CaSO4、Fe3O4及SiO2相和玻璃相;其具有轻质、高强、隔音、隔热、保温、防火、不产生二次污染等特点;具体体现在泡沫陶瓷的气孔率高达62.2~78.5%,密度0.42~0.81g.cm-3,抗压强度达4.8~8.4MPa,耐酸碱性在98%以上。
-
公开(公告)号:CN104496433A
公开(公告)日:2015-04-08
申请号:CN201510001564.1
申请日:2015-01-04
Applicant: 中南大学
IPC: C04B35/10 , C04B35/14 , C04B35/622 , B09B3/00
Abstract: 本发明提供了一种以钨尾矿为主要原料的高强度陶瓷及其制备方法,陶瓷中原料所占质量百分比为:钨尾矿80~90%,钠长石10~20%,外加占原料总量1~5%的粘结剂。先对钨尾矿进行预处理,将预处理好的钨尾矿与钠长石混合球磨,用不锈钢模具压制成型;干燥后烧结,即制得高强度陶瓷。该陶瓷的体积密度为2.42~2.47g/cm3,吸水率为0.018~0.089%,抗弯强度为78~105MPa,抗压强度为170~252MPa。本发明钨尾矿利用率高(质量百分数达80%~90%),且利用钨尾矿与钠长石传统原料的结合,较大幅度地降低了烧结温度,制备工艺简单,生产成本较低,适合大规模生产,可有效地减少钨尾矿对环境的污染。
-
公开(公告)号:CN104496433B
公开(公告)日:2018-03-02
申请号:CN201510001564.1
申请日:2015-01-04
Applicant: 中南大学
IPC: C04B35/10 , C04B35/14 , C04B35/622 , B09B3/00
Abstract: 本发明提供了一种以钨尾矿为主要原料的高强度陶瓷及其制备方法,陶瓷中原料所占质量百分比为:钨尾矿80~90%,钠长石10~20%,外加占原料总量1~5%的粘结剂。先对钨尾矿进行预处理,将预处理好的钨尾矿与钠长石混合球磨,用不锈钢模具压制成型;干燥后烧结,即制得高强度陶瓷。该陶瓷的体积密度为2.42~2.47g/cm3,吸水率为0.018~0.089%,抗弯强度为78~105MPa,抗压强度为170~252MPa。本发明钨尾矿利用率高(质量百分数达80%~90%),且利用钨尾矿与钠长石传统原料的结合,较大幅度地降低了烧结温度,制备工艺简单,生产成本较低,适合大规模生产,可有效地减少钨尾矿对环境的污染。
-
-
-
-
-
-
-
-
-