-
公开(公告)号:CN118941112A
公开(公告)日:2024-11-12
申请号:CN202410996097.X
申请日:2024-07-24
Applicant: 东北电力大学 , 中国电力科学研究院有限公司
IPC: G06Q10/0637 , G06Q50/06 , G06N3/0455 , G06N3/084 , H02J3/00
Abstract: 本发明公开了一种基于时空相关性的光伏电站集群功率预测方法,包括以下步骤:对数值天气预报中的气象特征和光伏电站输出功率进行相关性分析,确定影响光伏功率预测的特征变量;定义光伏电站中的每个光伏站点为一个节点,基于所述特征变量和光伏电站输出功率计算每个节点之间的相似性,构建邻接矩阵;将所述邻接矩阵输入优化后的GAT‑Transformer模型,获得光伏电站集群功率预测结果;所述GAT‑Transformer模型包括:GAT模块和Transformer模块。该方法通过时空特征的综合处理、高效模型结构与优化算法的结合,实现了对光伏电站集群功率的高精度、高效预测,同时保持了模型的灵活性、可扩展性和一定的解释性,为光伏能源管理与调度提供有力支持。
-
公开(公告)号:CN117996750A
公开(公告)日:2024-05-07
申请号:CN202410248411.6
申请日:2024-03-05
Applicant: 东北电力大学 , 中国电力科学研究院有限公司 , 国网吉林省电力有限公司白城供电公司 , 国网吉林省电力有限公司吉林供电公司 , 国网吉林省电力有限公司四平供电公司
IPC: H02J3/00 , G06F16/29 , G06Q50/06 , G06F18/213 , G06F18/23 , G06N3/0442 , G06N3/08
Abstract: 基于双输入模式下NWP风速校正的风电功率预测方法,属于风电技术领域。本发明提出的基于双输入模式和波动聚类的NWP风速校正方法能降低模型捕捉映射关系的难度,集中于对实测风速建立映射关系,提高NWP风速的校正精度,再将校正后的值应用于短期风电功率预测中,获得更准确的短期风电功率预测结果。本发明公开的方法物理意义清晰、科学合理、实用价值更高、精度更高,适用于风电功率预测,并且预测精度高,预测结果有效,适用性和实用性强。
-
公开(公告)号:CN119419779A
公开(公告)日:2025-02-11
申请号:CN202411559265.5
申请日:2024-11-04
Applicant: 东北电力大学 , 国网吉林省电力有限公司经济技术研究院 , 中国电力科学研究院有限公司
IPC: H02J3/00 , G06F18/213 , G06F18/27 , G06F18/22 , G06F123/02
Abstract: 本发明属于风力发电预测技术领域,以现有长预见期数值天气预报的可用性差作为切入点,提出了计及显著风过程演变规律及电量约束的长预见期风电集群功率预测方法。考虑自相关分析的显著风过程识别方法预测未来的功率趋势;探求基于变分模态分解和多元线性回归模型的电量预测8‑15天电量预测方法;建立电量‑功率‑趋势关系,使用历史相似趋势过程匹配方法,实现功率重构完成预测。本发明提出的方法是一种考虑电量和功率趋势,适用长预见期的预测方法。本模型计算简单、预测性能高、物理意义清晰、预测结果有效、实用性强。
-
公开(公告)号:CN117200221A
公开(公告)日:2023-12-08
申请号:CN202311203352.2
申请日:2023-09-19
Applicant: 东北电力大学 , 中国电力科学研究院有限公司
IPC: H02J3/00 , H02J3/38 , G06F18/213
Abstract: 计及波动趋势动态感知长预见期风电集群功率预测方法,属于风电功率预测技术领域,本发明以波动趋势动态感知改善特征输入,提升预测精度,并通过分析8‑15天功率预测结果的波动特性,提出不同分辨率配合的预测趋势校正,实现了预测精度提升。其能够反映系统动态特性、跟踪未来功率趋势;本模型计算简单、预测性能高。物理意义清晰,预测结果有效,实用性强。
-
公开(公告)号:CN118485177A
公开(公告)日:2024-08-13
申请号:CN202410651942.X
申请日:2024-05-24
Applicant: 东北电力大学 , 吉林农业科技学院 , 国网吉林省电力有限公司经济技术研究院 , 中国电力科学研究院有限公司
IPC: G06Q10/04 , G06Q10/0631 , G06F18/23213 , G06N3/0442 , G06Q50/06
Abstract: 本发明公开了一种考虑多元负荷耦合特性的IES负荷预测方法,首先,利用FP‑Growth算法对多元负荷数据进行分析和挖掘,识别出负荷之间的潜在关联性;通过对各个负荷之间的关联度进行累加计算,确定综合能源系统中多元负荷的预测优先级;其次,基于多元负荷的预测优先级,选择具有最高优先级的负荷进行负荷相似波动集划分;进一步地,通过k‑means聚类算法划分相似负荷场景集。最后,针对每个负荷场景集,采取逐级预测的策略,使用双向长短期记忆神经网络进行场景集预测建模,进行多元负荷数据预测。通过算例结果表明:使用本发明方法具有较高的预测精度,能够有效处理负荷的剧烈波动,从而满足系统安全稳定的运行要求。
-
公开(公告)号:CN118353006A
公开(公告)日:2024-07-16
申请号:CN202410513658.6
申请日:2024-04-26
Applicant: 东北电力大学 , 国网吉林省电力有限公司经济技术研究院 , 中国电力科学研究院有限公司
IPC: H02J3/00 , H02J3/38 , G06Q10/063 , G06Q10/04 , G06Q50/06
Abstract: 本发明公开了一种基于本征可预测量提取的风电集群功率日前预测方法,涉及风力发电预测技术领域。该方法包括:构建面向风电集群的风速功率曲线,基于改进的比恩法构建初始风速功率曲线集;利用每个风速区间的综合评价误差对初始风速功率曲线集进行筛选,得到最终风速功率曲线集;提取本征可预测量,并分离出对应的干扰量;基于本征可预测量,获取本征可预测量的预测值;利用大阈值历史相似匹配法获取所述干扰量的预测值;将本征可预测量的预测值和干扰量的预测值相加,得到最终的风电功率预测值。本发明提出的基于本征可预测量提取的风电集群日前预测方法,其物理意义明确、预测稳定性强、预测性能高、预测结果有效、实用性强。
-
公开(公告)号:CN116384561A
公开(公告)日:2023-07-04
申请号:CN202310275044.4
申请日:2023-03-21
Applicant: 东北电力大学 , 中国电力科学研究院有限公司
Abstract: 本发明的一种风电集群功率超短期预测误差修正方法,其特点是,包括:考虑了风电功率预测误差对负荷峰谷时段的危害、对初步预测得到的风电功率超短期预测误差进行分负荷峰谷时段的修正、仿真计算和误差分析步骤,考虑风电功率预测误差的季节特性对一日内负荷谷值时段Ⅰ、峰值时段Ⅰ、谷值时段Ⅱ和峰值时段Ⅱ进行分别修正,并且基于这种修正,负荷峰谷时段有害误差有效减少,负荷谷值时段的弃风损失也相对减少,提升了系统运行经济性;本发明提出的修正模型是一种适用于多模型初步预测再修正的模型,其计算简单、预测性能高、物理意义清晰、预测结果有效、实用性强。
-
公开(公告)号:CN117277308A
公开(公告)日:2023-12-22
申请号:CN202311329201.1
申请日:2023-10-16
Applicant: 东北电力大学 , 中国电力科学研究院有限公司
IPC: H02J3/00 , G06F30/27 , G06F18/213 , G06F18/23 , G06N3/0464 , G06N3/048 , G06N3/0499 , G06F119/06
Abstract: 本发明基于天气变化自适应的分布式光伏短期功率预测方法,属于光伏功率预测技术领域,基于改进多元宇宙算法优化的卷积神经网络,通过对历史功率样本进行滤波处理,采用K‑Medoids算法对功率序列进行聚类划分得到代表性天气事件气象特征,在基于灰色关联度匹配未来时段的天气事件类型,通过天气过程聚类划分对不同天气场景的分布式光伏功率进行短期预测,得出结论经仿真验证,证明本发明方法有效提升了光伏功率在不同天气事件下的适应性,提升了整体的预测精度。
-
公开(公告)号:CN119200037A
公开(公告)日:2024-12-27
申请号:CN202411150395.3
申请日:2024-08-21
Applicant: 中国电力科学研究院有限公司 , 国家电网有限公司 , 国网湖北省电力有限公司
Abstract: 本发明提供的一种基于雷达资料的非线性短临预报方法、装置及设备,包括:获取待预测时刻之前的历史雷达回波数据,并对所述雷达回波数据进行预处理,得到雷达回波图;将所述雷达回波图代入预先训练好的双通道卷积时序外推模型中,得到雷达外推预测数据;其中,所述预先训练好的双通道卷积时序外推模型是采用深度学习卷积对历史某时刻前的雷达回波图和所述某时刻后的雷达回波图进行学习得到的;所述双通道卷积时序外推模型包括深度学习卷积双通道编码器和解码器。本发明利用该雷达外推方法可以高效且准确地实现短时强对流天气的预报预警,从而降低局部强对流气象灾害对变电站和输电线路带来的损失,并提高电力设备设施的应急响应能力。
-
公开(公告)号:CN110019167B
公开(公告)日:2024-09-20
申请号:CN201711430404.4
申请日:2017-12-26
Applicant: 中国电力科学研究院有限公司 , 国家电网公司 , 国网江苏省电力有限公司 , 国网吉林省电力有限公司
IPC: G06F16/215 , G06F16/21 , G06F16/28 , G06F17/16
Abstract: 本发明涉及一种中长期新能源资源资料库构建方法及系统,基于预先构建的多源气象数据同化资料库与再分析资料库进行气候数据模拟,生成气候模拟数据集;对所述气候模拟数据集按预先设定的分类尺度整合生成中长期新能源资源资料库。本发明以发明基于多源数据再分析技术的中长期新能源资源资料库构建方法,用于预测新能源资源中长期分布情况,支撑新能源大规模开发,避免大量弃风弃光的现象发生。
-
-
-
-
-
-
-
-
-