一种低密度LNG储罐用高锰中厚板及其制备方法

    公开(公告)号:CN112281074A

    公开(公告)日:2021-01-29

    申请号:CN202011177915.1

    申请日:2020-10-29

    Applicant: 东北大学

    Abstract: 本发明提供一种低密度LNG储罐用高锰中厚板及其制备方法,所述LNG储罐用高锰中厚板化学成分按重量百分比为:C:0.30~0.68%,Si:0.15~0.54%,Mn:17.00~24.50%,Al:1.98~8.03%,P:≤0.020%,S:≤0.0060%,余量为Fe和不可避免的杂质。制备方法:1)冶炼和铸造;2)铸锭均质化处理;3)钢坯的控制轧制;4)钢板的快速冷却,得到低密度LNG储罐用高锰中厚板。本发明中的LNG储罐用高锰中厚板相对于常规的LNG储罐用高锰钢可减重约3.00%~11.54%,可有效降低LNG储运设备自重,采用Al合金化代替Cr、Cu等贵重金属,合金成本也进一步降低。另外,本发明的低密度LNG储罐用高锰中厚板同样具有高的强度和优异的超低温韧性,可满足LNG储运设施的建造要求。

    一种LNG储罐用高锰中厚板的轧制方法

    公开(公告)号:CN108672515A

    公开(公告)日:2018-10-19

    申请号:CN201810455188.7

    申请日:2018-05-14

    Applicant: 东北大学

    Abstract: 一种LNG储罐用高锰中厚板的轧制方法,属于钢铁材料技术领域,步骤:1)高锰钢铸锭直接锻造开坯成钢坯或高锰钢经熔炼、浇注成薄铸锭;2)钢坯或薄铸锭加热保温;3)采用窄坯宽展轧制法或薄铸坯直接轧制法将钢坯或薄铸锭轧制成热轧钢材;4)冷却后得到LNG储罐用高锰中厚板;本发明可用较薄的坯料生产LNG储罐用高锰中厚板,有利于降低导热系数高锰奥氏体钢的连铸生产难度;制备出的高锰中厚板,其纵向和横向超低温冲击韧性的差异性较小,改善LNG储罐用高锰中厚板超低温冲击韧性各向异性,大大缩短了工艺流程。

    一种C-Mn钢工业大数据的挖掘方法

    公开(公告)号:CN105740467A

    公开(公告)日:2016-07-06

    申请号:CN201610127406.5

    申请日:2016-03-07

    Applicant: 东北大学

    CPC classification number: G06F17/30536 G06F17/30294 G06F17/30598

    Abstract: 本发明提出一种C?Mn钢工业大数据的挖掘方法,属于钢铁工业生产和数据统计建模的交叉技术领域,该方法包括数据样本选取、钢卷归并、相似工艺聚类和训练数据均匀化;本发明通过选择多个钢牌号的数据,使数据样本中包含了较为全面的参数信息,反映出更客观的物理冶金规律,使模型具有更广泛的适用性;通过对检测钢坯成分的判断和采用聚类的方法,将相似工艺的多组数据校正为一组数据,精简数据量,删除冗余数据;在此过程中剔除了异常数据,减小了误差,使数据的规律性更为显著;通过统计训练数据三种力学性能的分布,调整了训练数据的分布均衡性;采用均衡的数据训练神经网络,可以使网络模型学习到均衡的信息,提高了模型的规律性和准确性。

    一种超低温韧性优异的高锰中厚板及其制备方法

    公开(公告)号:CN108504936B

    公开(公告)日:2020-01-14

    申请号:CN201810455448.0

    申请日:2018-05-14

    Applicant: 东北大学

    Abstract: 一种超低温韧性优异的高锰中厚板及其制备方法,属于钢铁材料技术领域,中厚板化学成分按重量百分比为:C:0.31~0.67%,Si:0.02~0.48%,Mn:22.0~27.3%,P:≤0.08%,S:≤0.06%,Al:1.5~4.64%,余量为Fe和不可避免的杂质;制备方法:1)钢坯加热保温;2)对加热后的钢坯进行一阶段轧制,得到热轧钢材;3)热轧钢材冷却,得到‑196℃韧性优异的高锰中厚板;本发明的高锰中厚板轧制态即可使用,具有优异的超低温韧性和较高的强度,且不需要添加合金元素,成本远低于9Ni钢。

    一种LNG储罐用高锰中厚板的轧制方法

    公开(公告)号:CN108672515B

    公开(公告)日:2019-12-24

    申请号:CN201810455188.7

    申请日:2018-05-14

    Applicant: 东北大学

    Abstract: 一种LNG储罐用高锰中厚板的轧制方法,属于钢铁材料技术领域,步骤:1)高锰钢铸锭直接锻造开坯成钢坯或高锰钢经熔炼、浇注成薄铸锭;2)钢坯或薄铸锭加热保温;3)采用窄坯宽展轧制法或薄铸坯直接轧制法将钢坯或薄铸锭轧制成热轧钢材;4)冷却后得到LNG储罐用高锰中厚板;本发明可用较薄的坯料生产LNG储罐用高锰中厚板,有利于降低导热系数高锰奥氏体钢的连铸生产难度;制备出的高锰中厚板,其纵向和横向超低温冲击韧性的差异性较小,改善LNG储罐用高锰中厚板超低温冲击韧性各向异性,大大缩短了工艺流程。

    基于QT工艺的低镍型LNG储罐用钢板及其制备方法

    公开(公告)号:CN109136769B

    公开(公告)日:2019-12-10

    申请号:CN201811207072.8

    申请日:2018-10-17

    Applicant: 东北大学

    Abstract: 基于QT工艺的低镍型LNG储罐用钢板及其制备方法,所述低镍型LNG储罐用钢板,其化学成分按质量百分数为:C:0.03~0.06%,Si:0.02~0.12%,Mn:0.52~0.98%,Ni:5.72~6.64%,P≤0.006%,S≤0.005%,Mo:0.13~0.32%,余量为Fe和不可避免的杂质。制备方法为:按所述成分选配原料熔炼,浇铸成铸锭;将铸锭加热,保温后进行两阶段控制轧制;轧后空冷至200℃以下;然后,进行淬火(Q)处理和回火(T)处理,出炉后水冷或空冷至室温,得到厚度为12~20mm的低镍型LNG储罐用钢板。

    一种540MPa级Ti微合金化热轧双相钢板及其制备方法

    公开(公告)号:CN108315663B

    公开(公告)日:2019-12-03

    申请号:CN201810321051.2

    申请日:2018-04-11

    Applicant: 东北大学

    Abstract: 一种540MPa级Ti微合金化热轧双相钢板及其制备方法,属于冶金技术领域;双相钢板化学成分按质量百分数为:C:0.04~0.08%,Si:0.05~0.15%,Mn:0.40~0.60%,S:≤0.015%,P:≤0.018%,Als:0.02~0.05%,Ti:0.03~0.05%,余量为Fe和不可避免的杂质;热轧双相钢板的制备方法:1)将钢坯加热至1200~1240℃,保温1.5~2.5h;2)对加热后的钢坯进行粗轧;3)对中间坯进行精轧;4)对板带进行水冷‑空冷‑水冷三段式冷却;本发明以廉价的微合金钛替代贵重合金铬和贵重微合金铌,降低了锰和硅的使用量,降低了轧机负荷,钢板组织均匀、表面质量良好,实现了抗拉强度540MPa级热轧双相钢板的低成本、易轧制、高效率生产。

    一种LNG储罐用高锰中厚板的高温热处理方法

    公开(公告)号:CN108570541B

    公开(公告)日:2020-07-10

    申请号:CN201810455449.5

    申请日:2018-05-14

    Applicant: 东北大学

    Abstract: 一种LNG储罐用高锰中厚板的高温热处理方法,属于钢铁材料技术领域,步骤:1)冶炼铸造成钢坯;2)加热并保温;3)将加热后的钢坯经多道次热轧;4)热轧钢材水冷至室温,得到高锰中厚板;5)将高锰中厚板进行热处理;6)将经过热处理的中厚板水淬火至室温,得到热处理后的LNG储罐用高锰中厚板;本发明制得的热处理后的高锰中厚板在‑196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比‑196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。

    一种LNG储罐用高锰中厚板的高温热处理方法

    公开(公告)号:CN108570541A

    公开(公告)日:2018-09-25

    申请号:CN201810455449.5

    申请日:2018-05-14

    Applicant: 东北大学

    Abstract: 一种LNG储罐用高锰中厚板的高温热处理方法,属于钢铁材料技术领域,步骤:1)冶炼铸造成钢坯;2)加热并保温;3)将加热后的钢坯经多道次热轧;4)热轧钢材水冷至室温,得到高锰中厚板;5)将高锰中厚板进行热处理;6)将经过热处理的中厚板水淬火至室温,得到热处理后的LNG储罐用高锰中厚板;本发明制得的热处理后的高锰中厚板在-196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比-196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。

Patent Agency Ranking