PIV标定装置及方法
    1.
    发明公开

    公开(公告)号:CN117805440A

    公开(公告)日:2024-04-02

    申请号:CN202410038829.4

    申请日:2024-01-10

    Abstract: 本发明提供一种PIV标定装置及标定方法,标定装置包括位移机构和相机,位移机构具有彼此垂直设置的第一位移台、第二位移台以及第三位移台,第一位移台和第二位移台沿第三位移台的长度延伸方向滑动,第一位移台和第二位移台上均设有一个激光器,激光器沿第一位移台或第二位移台的长度延伸方向滑动;相机设于位移机构的一侧,相机平面与第一位移台和第二位移台上的激光器打光的光路平面平行。上述PIV标定装置可以精确按照自定义的标定图像产生光路,利用激光器进行标定,对实验流场无干扰的同步测量,进而获得与试验环境更贴合的准确标定信息,对于激光器的标定,可以仅对位移机构进行程序控制进行微调即可适应于不同测量对象,极大地降低了成本。

    基于数字光处理技术的PIV标定系统及方法

    公开(公告)号:CN118311298A

    公开(公告)日:2024-07-09

    申请号:CN202410038943.7

    申请日:2024-01-10

    Abstract: 本发明提供一种基于数字光处理技术的PIV标定系统及标定方法,标定系统包括至少一个标定单元;每一标定单元包括光源、数字光处理模块以及相机,数字光处理模块内设有数字微镜芯片,光源发出的光入射至数字微镜芯片进行反射并在布有PIV粒子的测量区域照射出光路,相机对测量区域进行拍照曝光得到投影下的光路图。上述基于数字光处理技术的PIV标定系统,利用数字光处理模块,能够以像素级精度精确按照自定义的标定图像进行投影,利用数字微镜芯片进行投影,可以以更高的空间利用率实现标定图像灵活自定义、非接触,对试验流场无干扰的同步测量,进而获得与试验环境更接近的准确标定信息。

    一种基于GPU加速的三维粒子场及速度场重建方法

    公开(公告)号:CN113744358B

    公开(公告)日:2024-02-20

    申请号:CN202111003737.5

    申请日:2021-08-30

    Abstract: 本发明涉及一种基于GPU加速的三维粒子场及速度场重建方法,包括以下步骤:获取两组具有一定时间间隔的多相机图像数据,以及每个相机的权重矩阵查找曲线;采用GPU,基于所述多相机图像数据和权重矩阵查找曲线进行三维粒子场层析重建,获得重建的三维粒子场,在所述层析重建过程中,使用与体素数量等同的线程数量并行计算所有体素的光强重建;对所述重建的三维粒子场进行分块,提取每个数据块的两个诊断窗口数据,采用GPU并发进程进行三维互相关计算,获得所有窗口的平均速度,重建获得三维速度场。与现有技术相比,本发明具有有效减少计算时间开销、提升效率等优点。

    一种基于YSZ:Eu磷光材料的最高经历温度测试方法及其系统与应用

    公开(公告)号:CN116223456A

    公开(公告)日:2023-06-06

    申请号:CN202211578899.6

    申请日:2022-12-05

    Abstract: 本发明涉及一种基于YSZ:Eu磷光材料的最高经历温度测试方法及其系统与应用,测试方法包括:在试件表面喷涂形成YSZ:Eu磷光材料层,再置于热环境中,取出后,在紫外光激发作用下,YSZ:Eu磷光材料层发出磷光信号,将波长580±10nm处的磷光光强度与波长610±10nm处的磷光光强度作比,得到磷光光强比,根据磷光光强比以及光强比/温度标准曲线,即可获得试件在热环境中所经历的最高温度。与现有技术相比,本发明利用高温加热过程对YSZ:Eu磷光材料的晶体结构以及发光性质造成的不可逆转变,从而记录材料所经历的最高温度,并具有测温范围广(900‑1300℃)等优点,对隔热、耐热性能测试均具有较好的应用前景。

    一种PIV流场缺失数据补偿方法、装置及存储介质

    公开(公告)号:CN115408374A

    公开(公告)日:2022-11-29

    申请号:CN202210954904.2

    申请日:2022-08-10

    Abstract: 本发明涉及一种基于数据融合的PIV流场缺失数据补偿方法、装置及存储介质,其中方法包括:步骤1)获取具有不同数据缺失区域的PIV流场数据集;步骤2)对第一PIV流场数据集进行数据预处理;步骤3)对预处理后的第一PIV流场数据集进行本征正交分解,得到POD模态;步骤4)分别对POD模态和第二PIV流场数据集进行掩码,得到掩码POD模态和掩码数据集;步骤5)基于最小二乘回归将掩码数据集投影到掩码POD模态上,得到重构时间系数;步骤6)重构流场;步骤7)将重构流场中与第二PIV流场数据集中的数据缺失区域对应的数据按时间顺序依次平移到第二PIV流场数据集中,得到数据补偿后的融合数据场。与现有技术相比,本发明具有数据补偿效果好等优点。

    一种无反馈管道的流体振荡器

    公开(公告)号:CN112547330A

    公开(公告)日:2021-03-26

    申请号:CN202011371440.X

    申请日:2020-11-30

    Abstract: 本发明涉及一种无反馈管道的流体振荡器,包括振荡器主体以及设置在振荡器主体内依次连通的整流段、收缩段、反应腔室、喉部和扩散形喷嘴,所述的整流段与后端的外部压力流源连通,所述的反应腔室的截面呈前大后小且以前后方向的中线上下对称的葫芦形,所述的扩散形喷嘴沿程的壁面进行弧形扩充后呈喇叭状。与现有技术相比,本发明具有结构简单、体积小、频率高、更均匀的周期性横向射流振荡等优点。

    一种温度压力联合测量系统及测量方法

    公开(公告)号:CN107655589A

    公开(公告)日:2018-02-02

    申请号:CN201710706867.2

    申请日:2017-08-17

    CPC classification number: G01K11/32 G01L1/242

    Abstract: 本发明涉及温度压力联合测量系统及测量方法,该系统包括温度压力探针、与温度压力探针连接的光纤耦合器、通过光纤与光纤耦合器进口连接的激光光源、通过光纤与光纤耦合器出口连接的分光镜以及设置在分光镜不同光路后方的信号处理单元,所述温度压力探针的表面涂覆Zr3Y4O12:Eu与MFG混合磷光层,所述Zr3Y4O12:Eu与MFG混合磷光层中Zr3Y4O12:Eu与MFG的质量比为(800~2500):1。与现有技术相比,本发明具有能以非接触式方法联合测量温度场和压力场,测量温度高(500-1000℃),温度及压力测量精确度高的特点,根据改变温度压力测量探针的形状适应不同环境下的温度压力测量,不影响温度场及压力场,适用范围广,适用于测量航空发动机或地面燃气轮机处于工作状态下的温度。

    基于YSZ:Re荧光寿命测量的温度测量系统及其测试方法与应用

    公开(公告)号:CN106568526A

    公开(公告)日:2017-04-19

    申请号:CN201610910520.5

    申请日:2016-10-19

    Abstract: 本发明涉及基于YSZ:Re荧光寿命测量的温度测量系统及其测试方法与应用,温度测量系统包括信号发射器、与信号发射器电连接的UV‑LED紫外光源、温度测量探针以及与温度测量探针配合使用的温度信号处理单元,该温度信号处理单元包括滤光镜、光电倍增管检测器、与光电倍增管检测器依次电连接的电阻箱及示波器,所述的温度测量探针的表面喷涂有YSZ:Re荧光层,并通过光纤分别与UV‑LED紫外光源、滤光镜相连;所述的温度测量系统用于测量航空发动机或地面燃气轮机处于工作状态下的温度。与现有技术相比,本发明具有测量温度高500‑1200℃,温度精确高的特点,根据改变温度测量探针的形状适应不同环境下的温度测量,不影响温度场,温度精度高,适用范围广。

    一种基于无反馈振荡射流的无舵面翼型升力装置

    公开(公告)号:CN115465445B

    公开(公告)日:2024-11-19

    申请号:CN202211185451.8

    申请日:2022-09-27

    Abstract: 本发明涉及一种基于无反馈振荡射流的无舵面翼型升力装置,包括环量控制翼型以及设置在环量控制翼型主体内部的无反馈管道的流体振荡器和外部的康达表面,所述环量控制翼型主体内部还设有射流通道、隔板和集气室;所述集气室包括进气端和出气端,所述集气室的孔径由进气端到出气端逐渐递增,所述射流通道的一端连通有外部气源,另一端连通集气室的进气端,所述集气室的出气端连通流体振荡器的整流端,所述隔板固定在射流通道和集气室的腔体内。与现有技术相比,本发明具有翼展方向射流均匀稳定且增升效果更好等优点。

    一种发动机叶片热疲劳消除装置
    10.
    发明公开

    公开(公告)号:CN115467715A

    公开(公告)日:2022-12-13

    申请号:CN202211228495.4

    申请日:2022-10-09

    Abstract: 本发明涉及一种发动机叶片热疲劳消除装置,作用于发动机叶片内壁,装置包括振荡器阵列,振荡器阵列包括多个振荡器,振荡器相互平行,且相邻两个振荡器的相接近的两个反馈通道相连接,形成共享反馈通道,振荡器包括振荡器入口、振荡器出口、内部振荡腔和壁块,壁块对称设置在射流中心线两侧,壁块的内侧面为壁面,壁面之间形成内部振荡腔,内部振荡腔的入口与振荡器入口相连接,内部振荡腔的出口与振荡器出口相连接,共享反馈通道的一端与振荡器入口相连接,共享反馈通道的另一端与内部振荡腔的出口相连接。与现有技术相比,本发明具有消除热斑,减少热应力和热疲劳等优点。

Patent Agency Ranking