基于波长频次选择的土壤重金属光谱特征提取、优化方法

    公开(公告)号:CN114354666B

    公开(公告)日:2023-12-26

    申请号:CN202111677903.X

    申请日:2021-12-31

    Applicant: 三峡大学

    Abstract: 本发明涉及基于波长频次选择的土壤重金属光谱特征提取、优化方法,包括:采集土壤样品,配置样本,获取样本的光谱,形成样本数据集;多次运行BOSS算法,计算各变量被选中的概率,挑选出概率大的波长变量,计算预测模型的RMSECV平均值,调整波长变量的数量使RMSECV平均值最小,确定波长变量的最优数量N;重复运行串联的ICO‑BOSS算法进行波长变量选择,计算各变量被选中的概率,从中选出N个概率大的波长变量,计算预测模型的RMSECV平均值,调整波长变量的数量使RMSECV平均值最小,得到最优波长变量集;利用得到的波长变量集预测重金属含量。本发明采用串联的ICO‑BOSS算法,并采用波长频次选择策略,选出最优波长变量集,用于重金属含量的预测,提高了预测模型的稳定性和精度。

    基于堆叠式模型的土壤重金属含量检测方法

    公开(公告)号:CN115598162B

    公开(公告)日:2024-08-06

    申请号:CN202111586536.2

    申请日:2021-12-21

    Applicant: 三峡大学

    Abstract: 本发明涉及基于堆叠式模型的土壤重金属含量检测方法,包括:采集土壤样品,配置预定重金属浓度范围的土壤样本;获取土壤样本的光谱,形成样本光谱数据集;利用迭代保留信息法筛选出光谱中的强信息变量与弱信息变量;选出具有代表性的四种特征变量选择方法,分别构建基学习器进行训练、测试;将基学习器集成,构建元学习器,并对元学习器进行训练、测试;将待检测土壤的光谱输入基学习器,依据元学习器得到的波长点判断分析土壤重金属的含量。本发明将多种波长变量选择算法并联、集成,克服了单一特征变量选择方法的缺陷,提高了土壤重金属含量的检测精度,检测结果稳定性好。

    基于波长频次选择的土壤重金属光谱特征提取、优化方法

    公开(公告)号:CN114354666A

    公开(公告)日:2022-04-15

    申请号:CN202111677903.X

    申请日:2021-12-31

    Applicant: 三峡大学

    Abstract: 本发明涉及基于波长频次选择的土壤重金属光谱特征提取、优化方法,包括:采集土壤样品,配置样本,获取样本的光谱,形成样本数据集;多次运行BOSS算法,计算各变量被选中的概率,挑选出概率大的波长变量,计算预测模型的RMSECV平均值,调整波长变量的数量使RMSECV平均值最小,确定波长变量的最优数量N;重复运行串联的ICO‑BOSS算法进行波长变量选择,计算各变量被选中的概率,从中选出N个概率大的波长变量,计算预测模型的RMSECV平均值,调整波长变量的数量使RMSECV平均值最小,得到最优波长变量集;利用得到的波长变量集预测重金属含量。本发明采用串联的ICO‑BOSS算法,并采用波长频次选择策略,选出最优波长变量集,用于重金属含量的预测,提高了预测模型的稳定性和精度。

    基于堆叠式模型的土壤重金属含量检测方法

    公开(公告)号:CN115598162A

    公开(公告)日:2023-01-13

    申请号:CN202111586536.2

    申请日:2021-12-21

    Abstract: 本发明涉及基于堆叠式模型的土壤重金属含量检测方法,包括:采集土壤样品,配置预定重金属浓度范围的土壤样本;获取土壤样本的光谱,形成样本光谱数据集;利用迭代保留信息法筛选出光谱中的强信息变量与弱信息变量;选出具有代表性的四种特征变量选择方法,分别构建基学习器进行训练、测试;将基学习器集成,构建元学习器,并对元学习器进行训练、测试;将待检测土壤的光谱输入基学习器,依据元学习器得到的波长点判断分析土壤重金属的含量。本发明将多种波长变量选择算法并联、集成,克服了单一特征变量选择方法的缺陷,提高了土壤重金属含量的检测精度,检测结果稳定性好。

    基于ICO-BOSS算法的土壤重金属光谱特征提取方法

    公开(公告)号:CN117874480A

    公开(公告)日:2024-04-12

    申请号:CN202311682639.8

    申请日:2021-12-31

    Applicant: 三峡大学

    Abstract: 本发明涉及基于ICO‑BOSS算法的土壤重金属光谱特征提取方法,包括:采集土壤样品,配置样本,获取样本的光谱,形成样本数据集;运行BOSS算法,计算各变量被选中的概率,挑选出概率大的波长变量,计算预测模型的RMSECV平均值并调整波长变量的数量使RMSECV平均值最小,确定波长变量的最优数量N;多次重复运行串联的ICO‑BOSS算法进行波长变量选择,计算各变量被选中的概率,从中选出N个概率大的波长变量,计算预测模型的RMSECV平均值,调整波长变量的数量使RMSECV平均值最小,得到最优波长变量集。本发明采用ICO‑BOSS算法,并采用波长频次选择策略,选出最优波长变量集,用于重金属含量的预测,提高了预测模型的稳定性和精度。

    一种BOSS-SAPSO优化极限学习机的土壤重金属预测方法

    公开(公告)号:CN115130377A

    公开(公告)日:2022-09-30

    申请号:CN202210704753.5

    申请日:2022-06-21

    Applicant: 三峡大学

    Abstract: 一种BOSS‑SAPSO优化极限学习机的土壤重金属预测方法,它包括以下步骤:步骤1:采集土壤样品X射线荧光光谱数据和重金属含量值,构建样本集;步骤2:对样本集或待检测光谱信息进行预处理;步骤3:对预处理后的光谱数据进行特征选择;步骤4:建立极限学习机;步骤5:采用优化后的权重和隐含层偏置训练极限学习机,得到土壤重金属预测模型,将测试集输入预测模型,得到重金属的预测值。本发明的目的是为了解决在现有的土壤重金属预测中,所获得的相关光谱数据维度高、数据间冗余大且光谱与土壤重金属之间会呈现复杂的非线性,从而使得土壤重金属预测效率、效果、精准度不高的技术问题。

Patent Agency Ranking